JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 9, NUMBER 10

Unitary Representations of the Generalized Poincaré Groups

Yuri V. NovozHiLov
Department of Theoretical Physics, University of Leningrad, U.S.S.R., and
Centre for Advanced Study in Theoretical Physics, University of Delhi, Delhi, India*

AND
IGOR A. TERENTIEV
Department of Theoretical Physics, University of Leningrad, Leningrad, U.S.S.R.

(Received 7 October 1966)
The problem of the explicit construction of unitary representations is solved for the generalized

inhomogeneous Poincaré groups ISL(n, C) and their subgroups. As a key to the solution, a method is
developed to find the generalized Wigner operator, which transforms a given n* momentum to the
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standard one. Results are also specified for the U(m, m) subgroup of the group ISL(2m, C).

INTRODUCTION

Some achievements of the SU, symmetry! indicate
that there might exist a generalized group of
elementary-particle symmetries which includes the
Poincaré group and the group SU(3) in a nontrivial
way. However, up to now all attempts at relativization
of the SU; symmetry were unsuccessful from the
physical point of view. Nevertheless, it seems worth
trying, at least from the mathematical point of view,
to explicitly build unitary representations of a
generalized Poincaré group.

In the present paper we consider the problem of
explicit construction of unitary representations for the
inhomogeneous groups ISL(n, C) and IU(m, m).

The homogeneous group SL(n, C) is a group of
linear unimodular transformations in the n-dimen-
sional complex vector space. As is well known, the
group SL(2, C) is the universal covering group of the
Lorentz group. If the latter is enlarged by adding
four translations, which transform according to the
(real) vector representation, one gets the Poincaré
group. Similarly, by adding n? translations to the in-
homogeneous group SL(n, C) we obtain the inhomo-
geneous group ISL(n, C). It is the semidirect product
of SL(n, C) and the Abelian group of translations 7, .

The group U(m, m) is a subgroup of the unimodular
group SL(2m, C), namely, the transformations of
U(m, m) leave unchanged the bilinear form

(1> él{lsklz — Erl?).

The additional requirement (I) also remains valid
for the inhomogeneous group IU(m, m).

An element of the ISL(n, C) may be written as
(A,Y), where V is a unimodular n X n matrix,

* Address until 15 July 1967.

1 B. Sakita, Phys. Rev. 136, B1756 (1964); F. Gursey and L.
Radicati, Phys. Rev. Letters 13, 173 (1964).

detV =1, and A denotes a Hermitian n X »n matrix.
The matrix A characterizes translations, being com-
posed of n? components ap of the displacement
vector and basis Hermitian n X »n matrices A :

(I B=0,1,"-+,n*— 1.

Hereafter, we adopt the usual convention of summa-
tion over repeated indices.

The multiplication law of the two group elements
(A,, V) and (A,, V,) is given by

) (A, V(Ag, Vo) = (A; + VITIANVE, V,Vy),

with the unit element e = (0, 1).

The existence of unitary representations U(A, V)
of the group ISL(n, C) and their classification ac-
cording to unitary representations of stationary groups
(or little groups in Wigner’s terminology?) have been
thoroughly investigated and proved.?®* However, the
problem of explicit construction of U(A, V) has been
solved for the Poincaré group only (Wigner?). It
should be stressed that Wigner’s investigation? is of
very general character, so that in the present paper
we take Wigner’s results, generalized in an obvious
way, as the starting point.

Unitary representations of the group ISL(n, C)
are defined by the set of functions of n2 momenta
pp with the scalar product

aw) (p¢)= f dpodpy -+ dp,a_u(®)P* )7 (D),

A = aBA'B5

where u(p) denotes an invariant measure.

An irreducible unitary representation U(A, V) is
given up to unitary equivalence by the following
relation?;

(V) Usad A, V)@oi(p) = exp [iSP(PA)] - Qoo (V)0 (B).

2 E. P. Wigner, Ann. Math. 40, 149 (1939).
3S. Helgason, Differential Geometry and Symmetric Spaces
(Academic Press Inc., New York, 1962).
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Here the n X n matrix V' in the argument of Q
depends not only on momenta pg, but also on a
unimodular transformation V of the homogeneous
group SL(n, C). On the one hand, V'(p) is a trans-
formation of the little group S(p°), belonging to a
standard momentum p° It means that under the
transformations V' the standard momentum p° is
left unchanged, or that the matrices P® = p% A, and
V' satisfy the equation V'POV’t = P°, On the other
hand, V’is related to a given transformation matrix V:

(VD) V'(p) = a(p)Va(p’), VP'VI =P,

Thus, the n X » matrix a(p) enables us to find an
argument of the unitary matrix Q in (V). We refer to
a(p) as the Wigner operator. The Wigner operator is
defined (in a nonunique way) as a transformation,
which brings the standard momentum P into a given
one P: aP%’ = P.

The matrix Q in (V) acts on the “internal” variables
only; matrices Q form an irreducible representation
of the little group S(p°).

According to (V) an irreducible unitary representa-
tion U(A, V) is fully characterized by a type of the
standard momentum p° [i.e., by the type of the little
group S(p°)] and specification of the irreducible
representation Q of the S(p°). We consider the case
where the standard momentum matrix P° is propor-
tional to the unit matrix: P® = «E, « > 0. In this case
the little group in ISL(n, C) is the well-known unitary
group SU(n). However, for an explicit construction of
Q(V’) in (V), it is necessary to know the Wigner
operator a too, because a(p) connects a given uni-
modular matrix V with a unitary matrix V' of the little
group S(p°®). Generators of the group ISL(n, C) in
the unitary representation can also be found only
after a(p) is calculated.

Therefore, in essence the present paper deals with
the structure of the momentum space of ISL(n, C)
and the method of the explicit construction of a(p).

In Sec. 1 the main relations for basis matrices A 4
are summarized. Section 2 reviews the group relations
involving momenta. The groups ISL(2m, C), IU(m, m),
and the group with reflection ISL(m, c) are considered
here in sequence, determined by their interrelation

ISL(2m, C) 3 IU(m, m) 5 ISL(m, C).

In Sec. 3 the method of the calculation of the Wigner
operator is proposed.® For the group ISL(n, C) the
result is given by (3.12) and (3.19). In Sec. 4, the
structure of the momentum space is investigated.

4 Yu. V. Novozhilov and I. A. Terentjev, Jadernaja Fys. 3, N6
(1966).
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Section 5 contains a brief discussion of generators in
unitary representation.®

Generalized Poincaré groups ISL(6, C) and IU(6, 6),
in connection with the problem of particle symmetry,
have been discussed in a number of physical papers.®

1. THE BASIC MATRICES

We give in this section a number of relations in-
volving basis matrices of the SL(m, C) group.

Consider the full set of m? linear independent
Hermitian m X m matrices A,, where the indices a, b
take values a,6=0,1,2,---, m® — 1. We choose
normalization of A, in the form

Ao = (1/2im)E, Spa, = 2-%5,,,

SpAA, = (2m)~18,,. (1.1)

Along with the matrices A, we make use of n X n
matrices A ,, wheren = 2m; hereindices 4, B, - - -, take
the values 0,1,---,n?2 — 1. Matrices A, are nor-
malized according to the same condition (1.1) by
substituting m —n and a, b — 4, B.

Properties of the group ISL(m, C) may also be ex-
pressed by means of quantities

fune = —2imSp(Aa[2y, A.]),
dabc = zmsp(’\a{lbs 1c}); dOab = 2%’nnlsab 4 (1'2)

The corresponding quantities constructed out of
matrices /A, are denoted by F pc and D 4p0.

Is is sometimes convenient to use a particular
representation of A, as a direct product of Pauli
matrices 6,(6, = |) and matrices A,:

AAEAZ= %cu®)‘a;

u=0,1,2,3; a=0,1,---,m*— L

(1.3)

Here the index A4 is replaced by a pair of indices
(4, a). The orthogonality relations for A, can be
written as

(1.9

with i, j, k, 1= 1,2, - -, n. As a consequence of (1.4)
the following relation holds for arbitrary n X n

2n(AA)z'k(AA)5l = 0,;,0;

5 Yu. V. Novozhilov and I. A. Terentjev, Vestn. Levingr, Univ.
N16, 5 (1966).

8 T. Fulton and J. Wess, Phys. Letters 14, 57, 334 (1965); H.
Bacry and J. Nuyts, Nuovo Cimento 87, 1702 (1965); W. Ruhl, ibid.
37, 301, 319 (1965); Yu. V. Novozhilov and . A. Terentjev, Phys.
Letters 15, 86 (1965); V. Kadyshevsky, R. Muradyan, A. Tavk-
helidze, and 1. Tedorov, Phys. Letters 65, 182 (1965); S. K. Bose
and Yu. M. Shirokov, Phys. Rev. Letters 14, 398 (1965); V. H.
Nguen, Jadernaja Fys. 2, 517 (1965); R. Delbourgo, M. Rashid,
A. Salam, and J. Strathdee, ‘“High-Energy Physics and Elementary
Particles,” Trieste, 1965 (unpublished); L. Micheland B. Sakita, Ann.
Inst. Henri Poincaré 11 (1965); B. Sakita and K. C. Wali, Phys. Rev.
139, B1355 (1965); J. S. Bell and H. Ruegg, Nuovo Cimento 39, 116
(1965); W. Riihl, ibid., 38, 675 (1965); J. M. Charap, P. T. Matthews,
and R. F. Streater, Proc. Roy. Soc. (London) A290, N1420 (1966).
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matrices R and S:
2nSp(A ,R)Sp(AS) = Sp(RS). (1.5)

We enclose indices A4 and a in parentheses in the case
when values 4 = 0 and a = 0 are excluded: (4) =
1,2,-++,n2 —land(@) =1,2,---,m? — l.Interms
of the representation (1.3) for A, it" means that
(A4) = (u, a) does not include the pair (0, 0).

2. MOMENTUM SPACE AND GROUP
RELATIONS
A. Group ISL(n, C)

We write the corresponding Lie algebra in the form
resembling that of the quantum-mechanical Poincaré

group
My, Min] = FoomoMoeo

My Nyl = FomoN s
Ne o> Nayl = =F ameMo
My, Pgl = FopoPo»
[Neos Pel = DyscPes
[P,,Pg]=0.

2.1

Here M| ,, are the generators of the compact subgroup
SU(n). Operators M and N, taken together dis-
play themselves as generators of the homogeneous
subgroup SL(n, C) of ISL(n, C). Momenta Pj
transform according to (n,n*) representation of
SL(n, C). Thus, there are n* momenta P, with eigen-
values p .

If we consider SL(n, C)not as su‘bgroup of ISL(n, C)
but as a separate group with generators M(,, and
N4y then in the fundamental representation of
SL(n, C) we would get

IV[(A) = —iAu), Ny = A(A)-

Then an element of SL(n, C) algebra in the funda-
mental representation can be written as

z(a, B) = —iN horn + DpBy, Spz=10, (2.2)

with real parameters « and §.
Instead of the n®-component momentum p, one can
introduce a Hermitian n X n matrix

P=A,p,, P=P 2.3)

which has one-to-one correspondence with the
momentum

p, = 2nSp(AP). (24

Under a transformation U from SL(n, C) the

momentum matrix transforms according to the rule

P’ = UPUT, U = exp z(x, f). (2.5)
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U is a unimodular matrix; therefore the determinant
of P is an invariant under transfarmation (2.5)

Z(p) = det P = det P’ = invariant. (2.6)

We consider in this paper only those representa-
tions of ISL(n, C) where the vector p , can be obtained
from the vector p’ = /2 n8,, by means of a con-
tinuous transformation belonging to SL(n, C). The
vector p% is an analog of the Poincaré momentum in
the rest frame; the matrix P corresponding to p%
is the unity matrix: P = E. Then P is normalized in
the sense that det P = 1.

The stationary, or little group, of the momentum p
is the set of those transformations V which leave P
unchanged: V,,,PV{, = P. The little group S(p°) of
P% = E consists of all unitary transformations belong-
ing to SL(n, C), or S(P%) = SU(n).

It is well known that an arbitrary element U of
SL(n, C) may be written as a product of a Hermitian
matrix

H = exp z(0, #)
and a unitary matrix
R = exp z(', 0):

U = exp z(a, B) = exp z(0, §') - exp z(«, 0) = HR.
@7

The matrix R belongs to the subgroup SU(n), while H
describes pure Lorentz transformation in the case
of the Poincaré group (n = 2). It is easy to see now
that the momentum matrix P in our case is a square
of the Hermitian transformation matrix:

P(8) = UPU' = H2 = a¥(p). (2.8)

Thus, in order to find P it is necessary to construct
a Hermitian matrix a(p) (Wigner operator) which
brings “rest-frame” momentum P? into P.

Let us also introduce the n®-component momentum
b, in the dual space. Properties of b, follow from the
transformation law of the matrix B = A b,

B’ = U™BU-Y, U™ =expz(a, —f). (2.9)

In order to establish a connection between momenta
of both kinds we impose the condition that the
product PB of the relevant matrices is the unity matrix,
or

B =Pl (2.10)

The condition implies the identity of little groups in
both dual spaces. According to (2.10) there exists a
generalized frame where both matrices P° and B° are
equal to the unity matrix. One can conclude also that

a(p) = ai(b).
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Equation (2.10) is equivalent to the following set of
relations for p4 and b:

DusePsbe =0, by-py=2n%  (2.11)

Solution of (2.11) gives b, as a function of p,. It is
given in Sec. 3.
B. Group IU(m, m)

Transformations of the U(m, m) group are those
unimodular transformations of SL(2m, C) which are
restricted by condition (I). Generators of U(m, m)
include a part of generators M, and N, only, i.e.,
M?, M2, NI, N2, An algebra in this case can be
obtained in a standard way by means of subdivision
of the compact algebra U corresponding to the group
SU(n) on eigensubspaces of the inner automorphism
7 of U.

We define = by a set of conditions

TM?a)T = M?a)’ TMzT = Mz:
™Mir = —M., M= —F2, (2.12)
=1
The SU(n) algebra now is split up into two parts
U=7%+ po. (2.13)

Then we get for the algebra £ corresponding to the
group U(m, m)
2 = fo + ipo .

The compact subalgebra of £ is nothing but an
algebra ¥, with generators M9, and M2. Hence, the
maximal compact subgroup in this case is isomorphic
to SU(m) ® SU(m) ® U(1).

In the fundamental representation the operation 7
is given by

(2.14)

r=2MN =0,0F,. (2.15)

Thus, the momentum space of U(m, m) contains
all the vectors p4(8:, B2, 62, BY,)) of (2.8) with an
additional condition 8 2, = 2 = 0. We denote vectors
p4 in such a U(m, m) space, as well as any function
of them, by characters indicated with a tilde so that

Pa=D4 SO =S, if B =p8=0.

One immediately gets an element of algebra #(«, f)
in the fundamental representation from (2.2) by
putting ol = a? = £9, = 2 = 0. By virtue of (2.12)
we have

3(a, B)r = 3(a, —B), (2.16)

where €2 = 2 = —el = —e? = 1. There is no sum-
mation over 4 in (2.16); this implies that the presence
of e, in formula will mean also no summation over
indices 4.

TAAT = eAA.A,

Yu. NOVOZHILOV AND I. TERENTJEV

One can conclude from (2.10) and (2.16) that the
momentum matrix P = [exp Z(0, 8)]* satisfies the
relation

wPr=P-1=8, (2.17)

Expressed in terms of momenta p, and b, this
relation means that in case of U(m, m) group b, is
related to p, as b, = e p,.

We can introduce a metric in the momentum space
845 = €48 5 because, as a consequence of (2.17), the
bilinear form p g , ;P is an invariant under U(m, m)
transformations. .

The transformation properties of P

PP=0PUY, O=expi(—«,f) (2.18)

can be derived from (2.2) and (2.5). However, it is

more convenient to consider the matrix Q = Pr with
the simpler transformation law

Q =-exp(—£)Qexp 2. (2.19)

In particular, any polynomial of Q transforms like Q
and the trace of any power of Q is an invariant.
Identities

SpQ* = n,

are easily verified.

SpQ¥ 1 =0, r=0,1,2--- (2.20)

C. Group with a Reflection ISL(m, C)
Let us put of , = 2 = B = 0in Z(«, §) and fix the
parameter «J such that the condition
exp (—iAded) = ir, o} = —(mn//2) (2.21)

is satisfied. Then we get the group ISL(m, c) with
reflection =, the generators of the group being MY,
and N},,, (@ =1,2,---,m® — 1. The momentum
matrix in this case is given by

P=#l+o)®p+ ¥l —o)®p,
where p denotes the momentum matrix of the group
SL(m, ¢) without reflection

pt=3Ab,; detp=1.

(2.22)

P=%}’a a2

Only momenta p? = ¥(p, + b,), p. = ¥(p, — b,) are
not equal to zero.

Reflection 7 is equivalent to the replacement of p
by p~ in (2.22) or to the replacement p, <> b, .

3. CONSTRUCTION OF THE WIGNER
OPERATOR

The Wigner operator a(p) as defined in Sec. 2
a’(p) = P,

is a Hermitian matrix which if squared gives us a

al = a,
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momentum matrix P. Thus, e(p) is a kind of a square
root of P. It is quite an elementary task to take the
square root of a matrix if it is a diagonal. Therefore,
our method of solving the problem includes as an
essential step the calculation of the diagonal elements
of P in terms of known quantities, i.e., momenta
Pa-
A. Group ISL(n, C)

Suppose that the eigenvalue problem of the matrix

P has already been solved,

Pé(k) = m(k)E(k);  (5(K), §(@D)) = &, (3.1)

where m(k); i,k = 1,2, -+, n is the eigenvalue of P
and £(k) are the corresponding eigenfunctions. In view
of our choice of standard momentum P?, all eigen-
values are positive, i.e., w(k) > 0. The matrix P may
be written in the form

P =S non(0, (s = EWED, (2)

if we introduce projection operators y(k) with prop-
erties

X(R)x(D) = Sy (k), Iglx(k) =E, (3.3
(k) and x(k) being functions of momenta p, .

We also use an expression for ¥ in terms of basis
matrices A,

X(k) = An(k), n4(k)=2n(§(K), A E(K)), (3.4)

which follows from (3.2).

Consider a matrix dP = A, dp,. It may be treated
as a perturbation of P. But according to (3.4), the
first-order correction to the eigenvalue #(k) is equal to
n (k) - dp4/2n. Hence, n,(k) is proportional to the
derivative of m(k),.

2n On(k)/op, = n (k).

This formula is often used in our calculations.

It follows from (3.2) and (3.4) that momenta p,
are related to “‘unit vectors” n, almost in the usual
way:

(3.5)

n

P = 2 n(kn (k).

k=1

(3.6)

The set of ‘“orthonormality” relations for ‘‘unit
vectors” may be easily derived from (1.1), (1.2), (3.3),
and (3.4)

é:lnA(k)nB(k) = 2nd 5, éln (k) = 2 nb g,

(ki) = 2nd;,  Dypemy(kKmp(i) = 28,nc(k).

(3.7)
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Now we can find the momentum b, of the dual
space as a function of p,.7 B is an inverse matrix of
P; therefore

b, = élnA(k)w—l(m = 2nZ(p) PZ(@)/op,. (3.9)

The second line in (3.8) is obtained by differenti-
ating Z(p) = det P with respect to p, and using (3.5).
Formula (3.8) provides us with the solution of (2.10).

We now proceed to the derivation of « as a function
of momenta p,. Let us first write « as a square root
of the diagonal P:

ap) = A, éllw(k)]"’nA(k)-

In order to get rid of n, in the sum (3.9) we use combi-
nation of formulas (3.5) and (3.7):

m(k)n4(k) = nD 4pcPp 0m(k)[0pc = nNgm(k). (3.10)
Consequently, if we apply N to (k) = In =(k), then

nN% (k) = n (k). (3.11)
Now it is possible to rewrite (3.9), in a compact form

3.9

a(p) = 2nRd,(p), (3.12)
where
N= AN
and
d(p) = SpP* = éltw(k)r. (3.13)

We can conclude from (3.13) that calculation of
all the matrix elements of a(p) is now reduced to the
calculation of a single function dy(p). Let us note that
quantities dy(p) with an integer s should be considered
as given. As a matter of fact, the 4, may be easily found
as traces of P if momenta p are known.

In the same way one can obtain the inverse matrix

a~'(p) = 4n_(9dy(p)/0p.,). (3.14)

Let us calculate next d; as a function of d, with
integer indices 5. Consider an auxiliary function

6(t) = klj(l + (k)1 =k§fk(p)t'°, fo=1 (3.15)

with coefficients f, depending on momenta p only.
In the case k = n we get the determinant of P: f, =
det P. Since functions f,(p) are invariant under unitary
transformations of the group SU(n), they can depend
only on momenta through the quantities d,(p) [see
(3.13)1.

An explicit expression for f; is

JP) = 4:(di(p), de(p), - - -, du(P)),

? Yu. V. Novozhilov, Phys. Letters 16, 348 (1965).

(3.16)
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where 4, is defined by

Ak(xl’st e ’xk)

_ (crp 3 ERx e (o

@ LY 1. g ’

(3.17)

Summation in (3.17) is extended over all positive
integers [y, Ly, -+, I, satisfying the condition /; +
2l + - -+ + kI, = k. Equations (3.15)~(3.17) deter-
mine completely the polynomial G(¢). From the other
side, points ¢t = —1/m(k) are roots of G(t) or poles of

d oo oy LY
PLCCEDY (t + W(k)) . (3.18)

Hence, if we make use of an integral representation

H © v—1
sin (‘Vﬂ)f X dx = bv—l, 0<v < 1,
7 Jo b+ x
then the function d, in the case 0 < s < 1 becomes
dp) = S—‘“——(S”)f dinG@t), 0<s<1. (3.19)
ks 0

As a particular choice of (3.19) we get d.

It is now sufficient to substitute d; in (3.12) in
order to have a solution for a(p).

It should be noted that only first n functions
dy,d,, - ,d, are independent. Any other function
d.(p) with an integer r > n can be reduced to a com-
bination of basic functions d,, d,, -, d,. The con-
nection between different 4,(p) can be derived from the
identity

ap = 2 1 o).

(r—Ddr (3.20)

Moreover, by virtue of (3.11) and (3.13) there
exists another useful identity

Pr = (n/r)Nd,(p). (3.21)

By means of (3.21) one can find matrix elements of
the matrix P” with integer r in terms of functions
d,dy,- -+, d,.

B. Group IU(m, m)

Since the group U(m, m) is a subgroup of SL(2m, C),
the results for a(p) obtained in the preceding section
can be taken over without change, if we only consider
a(p) on the subspace of momenta p,. However, the
simplifications cannot be made distinctive in such an
approach. Therefore it is reasonable to undertake a
special investigation.

Let us consider again momentum matrix P. Using
(2.17) one can establish a relation between the first m

Yu. NOVOZHILOV AND I. TERENTJEV

eigenvalues (k) and other ones #(k + m):

wk +m)y=aYk), k=1,2,-++,m.
Let us denote projectors on eigenvalues #(k) and
#(k + m) by 6(k) and 8'(k) correspondingly and set up

their even and odd combinations (with respect to
reflection 7):

X®(k) = 0(k) £ 0'(k)

so that 7x‘¥)r = 4y In the same way instead of
“unit vector” n(k), we introduce two “unit vectors”

(k) = i (k) + Bk + m),

which manifest themselves also as coefficients in the
A 4 expansion of projectors:

X2k = A (k).
The new *‘unit vectors” satisfy the relations
31 £ egniP(k) = nP(k); 31 F e)ni(k) =0
(3.22)

with e, defined by (2.16). It then follows from (3.22)
that

e = g2 = p20 = 30 =0, (3.22)

The momentum matrix (3.2) now becomes

P= i [x*(k) cosh f(k) + x‘7(k) sinh f(K)],

f=In# (3.23)
whereas (3.13) has to be replaced by

dp) = kz’:l[#(k) + )] =2 kgcosh Fk). (3.24)

Our main expression for a(p) is (3.12), which con-
tains the differential operator N. Therefore, in order to
make use of (3.12), one should know, in general, the
function #(p) apart from the subspace of p , . However,

‘one may notice that an operator (1 — e,)NY is a

generator of JU (m, m) and, consequently, its applica-
tion to functions of p, cannot bring these functions
out of subspace p,. Thus, it is possible to apply
(1 — e,)NY to functions of 7(k). For example, we
have from (3.11)

n(1 — e IN%A(k) = n(k).

Let us split up the Wigner operator a(p) into odd
and even parts:

a(p) = a () + a(p), TaPr = fa®. (3.25)
The odd-parity part becomes now
a2 () = nAA (1 — e IN%dy(p). (3.26)
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The even-parity part of &(p) can be calculated if

;l%(p) is known

a(p) = 2v*(p) + 1, (3.27)

where
Y(p) = 2nf (1 — e )NGdy(p).

The function G(t) in this case takes the form
Gty =TI 1 + (k) + #7'(k)t + 1°]
k=1
= T + D™,

where T(y) is a polynomial of degree m,

(3.28)

T(y) =§1 a@Y, v =i+ (3.29)

Coefficients ¢;(p) of the polynomial can be repre-
sented by the already known function A; [see (3.17)]
but with different arguments:

P(P) = Ai(p1s P2> """ 5 Pr)s
m
Pr = Zl [a(r) + 77" (3.30)
New arguments- p;, are functions of dy,dy, ", de:
2K 5 2r
P2y = 2( )dz(r—'k) + ( )’
K=o\ k r
r—~1 2r — 1 ~
Par—1 =2, ( ' )er—Zk—l' (3.31)
¥=0 k

Polynomial 7(y) has its zeros at (—2 cosh §(k))=.
These points can be calculated explicitly for the case
n = 8 or m = 4. In the general case one has to return
to the integral formula (3.19).

As a result, d:(p) becomes, for 0 < s < 1,
=" " am (3w + o),
mw 0 k=1

(3.32)

where functions v,(p) are given by (3.30), (3.17), and
(3.31).

We can conclude. that (3.32) is in fact a solution of
the problem, because according to (3.26), (3.27) one
can obtain a(p) by simply differentiating (3.32).

C. Group ISL(m, C)

The Wigner operator can be obtained in a straight-
forward manner from (2.18):

a(p) = 3(1 + o) ®a(p) + (1 — o)) ®a(p). (3.33)

Here a(p) denotes the a(p) operator for the group
ISL(m, C) without reflection, which has been already
considered in Sec. 3A.
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4. STRUCTURE OF MOMENTUM SPACE

Properties of a(p) are closely connected with the
structure of the momentum space of ISL(n, C). For
example, the complexity of a(p) is closely connected
with the fact that in the case of ISL(n, C) there are
(n — 1) independent SU(n)-invariant quantities which
can be built out of momenta p,. Therefore, an in-
vestigation of the momentum space may be instructive.

Let us write the transformation a(p) as a product
of two transformations a® and v

(4.1)
(4.2)

where = = diag {m(1), m(2), -+, #(n)}, and v is a
unitary 7 X n matrix. The transformation (4.1) is
analogous, in some sense, to the pure Lorentz trans-
formation along z axis; it contains (# — 1) parameters
which in our case replace the relative velocity. If one
puts a® = exp z%g), then 7 = exp 2z%yp), while the
matrix z° is given in the Weyl basis by

P> 7w, 7w = a’Pal

n—P, P=vnvl, detv=1,

n—1
Zo((p) =C21h§(p§’ C = 0, (Z)a (C) = 1) 29 trt,n — 1'
(4.3)
Hereafter, we employ a notation h, for the diagonal
matrices A, . We adopt a convention that A, A,, - -+,
A, _, coincide with hy,hy,---,h, ,, and h, = A,.
The matrix elements

(h)g = m(k)oy, i,k=1,2,-+,n,

are related to components m, (k) of the weight m(k)
in the fundamental representation of SU(#).
The normalization conditions (1.1) correspond to

2“,;’”5(")"’4'(") = 0Oy, % my(k) = 0,
2SRk = 8o, M) = (JIn). @4
i=o0

As is well known, differences r(ik) = myi) — mk)
are roots of the group SU(n).

Now, the transformation (4.1) brings momentum
from the “rest frame” p% = ./2nd,, into m, =
2nSp(Am), which has only first n nonvanishing
components

e = 2nlélm<(k)7r(k) - 2n]§1mg(k) exp [20m(K)p)],

(4.5)
Parameters ¢, are related to f§ of (3.23):
B(k) = 2m(k)p), & = n S m(KFCK),
¥=1 (4.6)

Ek p(k) = 0.
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Unitary transformation v is described in momentum
space by (n? — 1)-dimensional orthogonal matrix
Viowm - The latter leaves unchanged the zero com-
ponent of momentum p, = m,:

Po = Pu9) = V23 exp Rm(@)  @47)

In fact, Vg, acts only on “spacelike” components
P4 and is analogous to the spatial rotations of the
Poincaré group. The space spanned by the vectors
P4, is denoted by Q. A subspace of 2, spanned by vec-
tors 7, is denoted by w. The latter coincides with
the weight space of the fundamental representation.
Equation (4.5) defines a vector m e w as a sum of
vectors 2nm(k)m(k) of length determined by =(k), and
with direction coinciding with that of the weight k.

Under the transformation (4.2) subspace w moves
orthogonally inside €2, while weights undergo an
orthogonal transformation of SU(n) (we recall that
weights transform according to the adjoint repre-
sentation).

Comparing (4.5) with (3.7) one can easily convince
oneself that

ng (k) = 2n ; Veoome(k), ny(k) = 2nmy(k).
(4.8)

Thus the set of “unit vectors” ny (k) is nothing but a
set of weights in fundamental representation, which
is transformed according to v of SU(n).

Relations (3.7) then select admissible sets of weights
(in fundamental representation) oriented in space €2
by means of V(4. It should be noted that in fact
the first three relations (3.7) may be obtained from
(4.4) taking into account only orthogonality of
Vi1 m) > Whereas the last relation (3.7) extracts out of
orthogonal transformations belonging to SU(n).

All the momenta

P ® = Vs Tm(®) (4.9)

corresponding to different v form a set in the space
Q, which is a minimal SU(n)-invariant set of points
equivalent to 7z, . The set includes 7z, as a particular
point and is entirely determined by 7z, or parameters
(). Every vector p(p) has the same stationary
subgroup S, which coincides with that of 7 g)(¢).
The stationary subgroup is the most essential
characteristics of a vector p(4 . Therefore we sub-
divide the space 2 into subspaces (), containing
vectors with the same stationary subgroup S,,

Q=3Q©,)=3Q,. (4.10)

The corresponding subdivision of w into subspaces

Yu. NOVOZHILOV AND I. TERENTJEV

4.11)

such that Q, is a minimal SU(n)-invariant space
containing w, .

We also consider the space ® of parameters (¢),
defined by (4.5). Because of the one-to-one corre-
spondence between vectors 7, € w and vectors ¢ € @,
the subdivision (4.11) implies in turn the subdivision
of space ®:

O=3dS,)=30,. (4.12)

The type of the stationary group of a given vector
depends entirely on the number and position of the
coinciding eigenvalues 7(k) of P. For the description
of the degeneration of P, let us introduce the set of
integer numbers X3, X,, * * + , X;inthe following manner:

a(l) =m(2) = - -+ = 7(xy),
7+ D= =a(x; + x),"* "
W(gxk-l- 1) == 77-(”),

so that

The enumeration of #(k) is of no importance, since
interchanging of =(k) can be obtained by means of
the Weyl transformations which are a particular
kind of transformations v and do not change the type
of the stationary subgroup. Thus, stationary subgroup
Sy is properly characterized by a set (x;, Xz, * * +, X;).
One can easily verify that

LX) = SUM) @ SUMX) @« -+
® SU(x) ® [U(1)]®0-1,

S(x1$x2: o

Such a subgroup contains

4
(25) -
k=1
parameters. The dimension of the minimal invariant
subspace of Q(x,, - - -+, x;) is denoted by

i
7](3‘1, e ,xz) = n2 _zlxl?:'
k=

Then, the momentum p4) € Q(x;, -, x;) is

x1 -1
Py = W(l)glﬂm(k) +-+ W(?:lxi + 1)

x 3 k), @4.13)

k=z;_1+1
where all (k) are different.
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If we adopt a lexicographic ordering and make use
of the freedom of enumeration of w(k), we can say
without loss of generality that m(1) > m(2) > -+ >
m(n). The subspace w(x,, - * -, x,) is then spanned by
vectors

x1 -1
@yt = n() Sm(l) + - + w(glx; + 1)

x Y mk). (4.14)
k=2;_1+1
Vector r(k) = m(k) — m(k 4+ 1) is a simple root
of SU(n). Denote by &(x;, xz,**, x;) a subspace
orthogonal to simple roots r(1),-:,r(x; — 1),
r(e + 1)yt + xp— 1), 00,

r(jglx,c + 1), e, r(n — 1)

This subspace contains w(x,, * * *, X;):

DXy, x) = (X, x) + D oy (4.15)
The sum in (4.15) is taken over all the stationary sub-
groups containing S(x;, x,, "+, x;) among their
subgroups. One can enumerate a group subdividing
the set of / integer numbers x;, into various subsets
and replacing each subset of by just one number—the
sum of x; in the subset.

The parameter space ®(x,, - -, x;) is formed by
all vectors ¢ with the structure very similar to (4.14),

%y

nle =p1) 3 mk) + - + ﬂ(lka + 1) > m(k).
(4.16)

As in the case of = space, one can also introduce a
subspace Ox,, -0, x) orthogonal to the sequence of
simple roots discussed in connection with (4.15). Then
the spaces @ and @ are interrelated by means of the
formula similar to (4.15).

Let us now obtain the condition satisfied by p,
so that it belongs to the invariant minimal space
Q(x,, -+ +,x,), which includes @(xy,- -, x;). It
follows from the definition of d,(p) that in the case of
”(k) EWD(Xy, 5 Xy),

i k-1 H
dyp) = zlx,{w( T+ 1)] . @

k= i=
As a result, n quantities d(p) are connected by f =
n — I+ 1 relations of a type F/d,,***,d,) =0,
y = 1,--+,f, which are the conditions singling out
the space Q(x,, - - -, x,). Note that the dimensionality
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of both &(x,, .-, x,) and §(x;, - -+, x;) is equal to
I — 1, while that of Q(x,, * « -, x,) is equal to

5
n—=xi+4+1-1.
k=1

5. GENERATORS IN UNITARY REPRESENTATION

In order to complete the discussion of unitary
representations of ISL(n, C) let us consider briefly
the form of generators.

An infinitesimal transformation U(0, V) by defini-
tion of generators is given by

U@, V)=~ | + Mgy + Npbo- (5.1

On the other hand, the change of ¢(p) arising from
U(0, V) can be calculated from (V):

U@, V)g(p) = Q(«*(p)Va(@ Do)  (5.2)

with VP'VT = P. To this end, one has to replace V
in (5.2) by

(5.3)

and to find the dependence of P’ on infinitesimal
parameters «,, 5, and momenta p. The expression
for M(, and N, follows then from the comparison
of (5.1) with the infinitesimal form (5.2).

Let us first consider the scalar representation, when
Q = |. In this case the generators are denoted by
MY, and N9, . A straightforward calculation gives

V=1—iAya gy + Apbay

M(s = —F45cPp /005 Nioy = DioyncPs 0/0pc.
5.4
The operators MY ,, and N7, correspond to the
orbital angular momentum in the case of the Poincaré
group. Note that we have already used N{,, [see
(3.10) and (3.11)].
In nonscalar representations the generators M,
and N, take the form

My =My + My, Ny =Ny + Ry (55

Here operators MM,y and N,y have arisen from the
variation of the matrix

Qe Va') = | + M ya + NBro
under an infinitesimal V with
o' = a + 2nSp(A, dP) du/dp, .

In the case of the Poincaré group, operators M,
and N, are connected with the spin; for this case
they were derived by Shirokov.?

8 Yu. M. Shirokov, Dokl. Akad. Nauk (SSSR) 94, 857 (1954);
C. Fronsdal, Phys. Rev. 113, 1367 (1959).
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The operators N, contains I, ,, linearly
gt(A) = K(A)(B)g‘n(B)a
Ko = —2n Im Sp{A g (p)[A vy + Niplep)} .
(5.6)

If one inserts now a(p) into (5.6), one gets an
expression of K 4y(p) in terms of variablesd,, -+, d,.

Evidently the method of explicit construction of
unitary representations developed for the case of the
group ISL(n, C) may be applied to all groups which
are subgroups of ISL(n, C). The class of such groups
are rather large so that the method described above

JOURNAL OF MATHEMATICAL PHYSICS

Yu. NOVOZHILOV AND I. TERENTJEV

is of a considerable generality. As an example we have
treated the group IU(m, m) in Sec. 3B; a special case
m =2, i.e., the group IU(2, 2), was investigated in
detail earlier.® No additional difficulties arise also
if one considers the group IU(m, m’) withm + m’ = n.®

The problem of the construction of a(p) for the
groups IU(m, m) and ISL(m, C) is equivalent to that
of solution of the linear covariant equation of the type
Qy = . Therefore, it would be superfluous to discuss
these equations separately.

® Yu. V. Novozhilov and I. A. Terentjev, in “International
Summer School in Elementary Particles Theory,” Jalta (1966).
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Wediscusssome equilibrium properties of random systems, i.e., systems whose Hamiltonian depends on
some random variables y with a distribution P(y) which is independent of the dynamic state of the system.
For a system of noninteracting particles which interact with randomly distributed scattering centers, the
important quantity is the average density of states of a single particle per unit volume, n(E). Feynman’s
path-integral formulation of quantum statistics is used to derive some properties of the average partition
function for one particle (Z,), which is the Laplace transform of n(E). In particular, it is shown that (Z,)
is an analytic function of the density of scatterers p for a wide class of particle-scattering center potentials
V(r), including those with hard cores and those with negative parts. The analyticity in p of the equilibrium
properties of these systems is very remarkable and is in contrast to the conjectured nonanalytic behavior
of their transport (i.e., diffusion) coefficients. We find also upper and lower bounds on (Z,) for a particle
acted upon by a random potential V(r) obeying Gaussian statistics with (F (D) V(")) ~ exp [—a2(r — r')?].
In the limit of “white noise,” (V(X)V(x")) ~ d(r — 1), (Z:) is shown to diverge in two and three dimen-
sions but remains finite in one dimension. This agrees with approximate results on the density of states.
In appendices we prove the existence, in the thermodynamic limit, of the free-energy density of a system
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with random scatterers and also of the frequency distribution and, thus, the free-energy density for a

random harmonic crystal,

1. INTRODUCTION

It is the purpose of this paper to investigate some
equilibrium properties of certain random systems.
By a random system we mean a system whose
Hamiltonian depends on some parameters y which
are, in a sense to be specified, random variables with
a distribution P(y) which is independent of the
dynamical state of the system. The dynamical
(canonical) variables of the system are denoted by x
so that the Hamiltonian H(x, y) is a function both of
x and y with x varying in time according to some
dynamical law.

Typical examples of model random systems dis-
cussed in the literature are (i) a lattice in which spins
are located randomly on sites with a probability p

* Supported by the Air Force Office of Scientific Research under
Grant No. 508-66.

independent of the other sites, (ii) a harmonic crystal
in which the masses or spring constants have random
values with some specified distribution, and (iii) a set
of particles, usually electrons, acted on by an external
potential due to the presence of centers of force
(scatterers, impurities) at positions {Ry, -, Ry} =
{R} = y. In the last case, which will be our primary
concern here, the Hamiltonian of a set of M particles
with positions {ry, -, ry} and momenta {p,,- - -,
Par} in a box of volume € is given by

M
H=3Yp2m+ Uy, ", Ty
=1

M N

+ }hz 2 V(rz' - Rn); (1‘1)

=1 n=1

where U is the interparticle potential which is inde-
pendent of the location (or presence) of the impurities
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and AV(r) is the potential energy of a particle in the
presence of an impurity located at r = 0.

In all these cases the physical situation, idealized in
these models, corresponds to starting with the system
at a high temperature and quenching it. The imper-
fections will then remain fixed in space and can be
described by the parameters y, whereas the other
degrees of freedom x come to equilibrium with a
Hamiltonian which depends on y. (The actual physical
situation is more complex, but this is a reasonable
approximation to it.) For a given system, y has, of
course, some specified set of values {Ry, - - - , Ry}, and
it is therefore necessary to state what we mean by
sayingthat the R, are distributed at random. To be more
specific, how do we compute the properties, such as
the internal energy or specific heat, of a macroscopic
system for which the values of the R, are unknown to
us? The simplest attitude one can take is to make
measurements on an ensemble of systems prepared in
the same way.! (This is a superensemble of thermal
ensembles for each specified {R,, -, Ry}.) Hence
the average of any function A(x, y) is given by

(A) = f dyP(y)(A), (1.2)

where
(A), = [Tr, (A(x, D PHENY)Z(),  (13)
Z(y) = Tr, e PV, (1.4)

is the partition function for the system represented by
a canonical ensemble with inverse temperature S.
Here P(y) is the distribution of random variables y
which, for case (iii) above, is
P(y)dy = Q"VdR,, - -, dRy;

R,in Q. (L5

It is also possible to consider the case where the number
of scatterers in  is not fixed, but has an average
value N. (This is actually used in Appendix B.) The
thermodynamic properties of this ensemble would then
be obtained from the free energy F defined as!

F = —fInZ(y)) = —f~" f P(y)In Z(y) dy. (1.6)

This prescription for obtaining the properties of a
system will be satisfactory only when the dispersal in
the values of In Z(y) is small. This will be true for a
macroscopic system when InZ(y) is an additive
quantity. The existence and some properties of the
free-energy density in the thermodynamic limit
lim (F/Q) for the spin system have been discussed

Q>0

1 R. Brout, Phys. Rev. 115, 824 (1959); M. W. Klein and R. Brout,
Phys. Rev. 132 2412 (1963).
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previously.? A proof of the existence of this quantity,
as well as the thermodynamic limit of the frequency
distribution function for random harmonic crystals,
is given in Appendix A.

In this paper we are primarily interested in case
(iii). The existence of hm (F/Q) for this system

is discussed in Appendlx B In the special situation
when the particles are noninteracting (U = 0) and
may be treated by Boltzmann statistics, the problem
reduces to an investigation of one of the most fre-
quently used models in the study of irreversible
phenomena, that in which a single particle interacts
with a set of scattering centers randomly distributed
in space. General properties of perturbation expansions
for the resolvent operator and the density matrix
have been discussed in many papers.® In Sec. 2 we
study properties of this system using the path-integral
formulation of quantum statistics which was intro-
duced by Feynman.* For M noninteracting particles
obeying Boltzmann statistics, (1.4) becomes

Zy = [ZYM! (1.7)

where Z,(y) is the (quantum-mechanical) partition
function for a single particle interacting in a volume
Q with N 'scatterers located at positions {R,, - - -
Ry} = y. From (1.6)

(F/Q) = ~(BY)™In (Z]'/MY)

= —(M/B[1 — In(M/Q) + (In [Z,(y; Q)/QD)],
(1.8)

where we have used Stirling’s formula for In M!.

We now argue somewhat heuristically that, since
Z, is an extensive quantity in this case, we will have
(In (Z,/Q)) ~ In (Z,/Q) in the limit Q — o0, N — o0,
N/Q = p = const. To see this more formally we
divide up the volume QintoJcubes, w; i =1, - -+, J),
each of volume ‘w; we consider the limits J— oo
followed by w— co. For reasonable forms of the
interaction potential V'(r) we should be able to neglect,
for sufficiently large w, the interaction between a
particle in one cube w,; with impurities outside w, as
well as the precise boundary conditions. Thus

b

Q7Z)(y; Q) ~ Q‘lé Z,(y"; 0) = J“i (z:/w).
) T

In (1.9) the z; can be considered independent random
variables so that, by the central limit theorem, in the

?R. B. Griffiths and J. L. Lebowitz, J. Math. Phys. (to be
published).
3 See, e.g., papers cited in Refs. 6 and 7.
4 R. P. Feynman and A. Hibbs, Quantum Mechanics and Path
Integrals (McGraw-Hill Book Co., New York, 1965). See also A.
Siegert, Phys. Rev. 86, 621 (1952).
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limit of large J, Z,(y; ) will have a normal distri-
bution

(Zy — (ZY)

P(Z) = _ = Ly) )

(Zy) em[ 2Bz } (1.10)
where

(AZ)? = J{(Az)*

and
In (ZJQ) = In ZJ) + {1 [1+zl—<zl> \
n () = In GBI + (o <zl>}

2
= In (Z,/Q) — %————%‘?ZZ;J 4o

= In (Z,/Q)

in the limit J-—> oo when P(Z;) becomes infinitely
sharply peaked about (Z;). Thus from (1.8) in the
limit M — o0, £ — 00, M[Q = const,

(FIQ) = =2 (M[Q)[1 — In (M[Q) + In ((Z,)/Q)].
(1.11)

Alternatively, we can consider this system to be
represented by a grand canonical ensemble with
chemical potential u, activity & = ef*, and mean
number of particles (M). The grand partition function

B(y; Q) = 3 M2V M! = &5,

M=1

(1.12)

so that the grand potential

F—uMy=—BXNInE) = —p(Z,) (1.13)
and
/2 InE(y; Q)\
M) = —— S = E(Z).
M) =§ o )=

For the free energy this gives
F=—fXM[I - In(MIZ)], (114

which coincides with (1.11) when (M) is associated
with the M of the canonical ensemble.

The thermodynamics of this system is thus given
entirely in terms of (Z;)/Q in the limit when the system
is large. In Sec. 2, we use the path-integral method of
Feynman to investigate the existence of an expansion
of (Z,)/Q2 in powers of the density of scattering
centers p = N/Q in the limit N, £ — o0, and of an
expansion in the coupling constant A when certain
conditions on the potential V(r) between electron and
scattering center are satisfied. This analyticity in 4
was shown first by Doniach,> who used a different
representation for the many-temperature Green’s
functions which arise in the expansion.

5 S. Doniach, “Greens Function Theory of Multiple Scattering.
1. Convergence of the Perturbation Series for the Partition Function™;
“IL. Variational Estimate for the Conductivity under Strong Coup-
ling Conditions” (unpublished).
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The importance of the quantity (Z,) here arises
from its linear relation to the average density of states

n(E) = (n(E; y)) = Q“l<§ o(E — Ea-(y))>, (1.15)

where E; are the energy eigenvalues of (1.1). We then
have

@ @12 = etFu(ks ) dE = [ () d.

—00
(1.16)
Equation (1.16) is valid for both classical and quantum
systems with their respective standard interpretations.
For quantum systems in which the particles obey
B.E. or F.D. statistics, the grand ensemble approach
gives

QX InEQ) = F f dE n(E) In (1 F e #E-w)

— ePHZ)HQ, (1.17)

when the particle density is low. In principle we can
compute the density of states from (Z;(f)) by the
inverse of (1.16):

() = o= CapeEz @y

Tl Je—iw

(1.18)

but this requires knowledge of (Z,(f)) for complex
B. The quantity n(E) has been investigated recently?
for various kinds of potential and we hope that our
results will be of relevance.

In Sec. 3 we consider the properties of a particle in
a potential random in space and obeying Gaussian
statistics. This corresponds to the high-density limit
of the random scatterers model discussed above.®”
In some nontrivial cases we obtain explicit bounds on
the average partition function, which, in the limiting
case of “white noise,” are consistent with recent
approximate calculations of the asymptotic value of
the average density of states.

2. EVALUATION OF (Z;)

In terms of Feynman’s path-integral formalism the
partition function for a particle of mass m interacting
through a potential A¥(r), with N scattering centers at
positions Ry, -+, Ry in a volume L, is given by

Z,(8; {R}) =fdro fﬁ:oér exp [—Lﬂ%mF dt

p N
[ @S e - R,,):l, @.1)
0 n=1

¢ B. I. Halperin and M. Lax, Phys. Rev. 148, 722 (1966); 153, 802,
(1967).
7 J. Zittartz and J. S. Langer, Phys. Rev. 148, 741 (1966).
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where 8 is the inverse temperature, the symbol
$7o or denotes the appropriately normalized sum over
all paths r(f) in Q such that r(0) = r(8) = ry, and we
have taken 4 = 1. We define the configurational
average of Z, by

N
ZB) = fn- [ T aRP(R, - ROZLGB: (R,
2.2)

The case of randomly distributed scatterers corre-
sponds to P = QN so that®

(Zy) =fﬂdro ﬁ:oér exp (—J;ﬂ}}miz dt)
X 11:11 {Q—l f dR, exp [nz ﬁ v ) — R,,)}}.

Each term in the product is identical, and, by adding
and subtracting unity, we can write the product as an
exponential in the limit N, Q— o0, p = N/Q =
const, so that

(Z(B)) = f dr, ﬁ"ar exp {— L L \mi® dt

+p f dR\:exp (—/1 fo L v ~ R)) - 1}}

If we introduce the following notation for the nor-
malized average of a functional of the path

E{F[r(]} o ,
g fﬁo dor exp (—J; imp® dt) Flr(1)]
¢

"o ( - L gome dt) or

=3 0 -
ﬁ exp

then we can write the partition function in the form

(ZA(P)Z,

= E{exp pde[exp (—lﬁﬂdtV(r(t) — R)) - 1]}

2.3)

Here Z, is the partition function for a free particle so
that

2= [ar srexp (4 ) = Q(igﬂf |
(2.4)

An expression of the type (2.3) can be obtained also
for a nonuniform distribution of scatterers of the

type

b

N
PRy, -, Ry) = OV TT f(R,),

n=1

8 S. F. Edwards and Y. B. Gulyaev, Proc. Phys. Soc. (London)
83, 495 (1964).
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where f'is normalized by
o f dRf(R) = 1.

However, this will only introduce an additional factor
f(R) into the R integration in (2.3) and will not
significantly alter the following discussion. A more
realistic distribution which takes into account corre-
lations in the positions of scattering centers will not
lead to a simple expression of the form (2.3).

A. Inequalities
Making use of the standard inequality
f) 2 f(%), (2.5)
where the bar represents averaging with respect to a

weight function normalized to unity and the function
f(x) is convex downward, i.e.,

d’f[dx* > 0,
gives

exp [—1 ﬁ L v ) — R)}

B
< g f dt exp [~ BV(r() — R)),

so that one obtains the following upper bound for
(Zy):

Z(B) < f dr, f'ar exp [— L "y mi® i

+ pde(e—lﬂV(RJ — 1)}

Therefore,
(Z(BN]Zy < exp [p f dR(eH7® _ 1)]

= (Z{(B)/Z,, (2.6)

where (Z{'(B)) is the configurational average of the
classical partition function.

B. Analyticity in p

Using some results obtained by Ginibre? in his
work on the analyticity properties of regular systems,
it is readily shown that (Z;(B; p))/Z, is an entire
function of p (for real positive f), for all reasonable
(noncoulomb) potentials ¥(r). To be more specific,
we assume that ¥(r) can be written as a sum of two
terms

V) = () + V()

satisfying the conditions

Vi(r) >0 for r<a,

@.7)

Vi) =0 for r>a,

(2.8)

® J. Ginibre, J. Math. Phys. 6, 1432 (1965); in particular, sce
Appendix 2.
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and

fdr[e"'”’z”)I — 1] < co. (2.9)

For the case where the particle-impurity has a hard
core, a may be taken to be the range of this core.
Writing (2.3) in the form

(Z,(B; p))Zy = Efexp [pQ([x(D)], A1}, (2.10)

we have

Q([x(D1, B) = Qu([x(®], B) + Qu(Ir(M}, ), (2.11)

where
0.1, 9 = [ dRLexp (-2 | avite) — ) - 1]

(2.12)
and

0501, ) = [aRexp (=2 a0~ w)

X [exp (——lﬁﬂdtVz(r(t) — R)) — 1].

(2.13)

Using (2.5) and (2.8),
1Q:([r(D)], A)I
< J dR | exp [—/1 f L avince) — R)] - 1‘

< f dR[exp ( A L L ave(ty — R) l) - 1}
< f dR[exp ( L ’ 4t Vet) — R)l) - 1}

< j AR L ﬂdt\:exp (B 1AVix(i) — R))) — 1].

Thus finally
1001, )l < f R[N 1] (2.14)

which is bounded by (2.9). Also, using (2.8), we have
10:([r(®], )| < va([r (], B), (2.15)

the volume of the region containing all points within
a distance a of the path r(f). The equality in (2.15)
holds when V; is a hard-core potential. Ginibre was
able to obtain very strong bounds on

Efexp [pv,(x(t), §)1}

from which the analyticity of (Z,)/Z, now follows.

Having established the analyticity in p of (Z;)/Z,,
it is now possible to show that the average “pressure”
of an ideal gas with quantum statistics is also analytic

T. BURKE AND J. L. LEBOWITZ

in p for V(R) > 0 and ef* < 1. This is readily seen by
expanding the integrand in (1.17) in powers of e## for
u <0, since n(E)=0 for E<O0, when V(r) > 0.
The coefficient of e'## is (=1)+1(IQ)"1Z,(If)) and is
bounded by

-t m \"* dR(e=*18V®)
(5u) 0o [ame e =]

according to (2.6), where v is the dimensionality of the
space considered. The series will therefore converge
to an analytic function of p for ef* < 1. It is an
interesting but unanswered question whether the
Bose-FEinstein condensation of an ideal gas, p =0,
will disappear at some finite p. This could happen, for
example, if n(E; p) was zero for E < E; and

n(E, +; p) # 0.
C. Analyticity in 21

By expansion of each term in the p series, when
(2.11) is satisfied, in powers of the coupling constant
A and rearranging, one can obtain an expansion of
(Z,(P)) in powers of A. This series was considered by
Doniach,? who showed that (Z,(8)) is an analytic
function of A for certain potentials. If we expand the
potential in its Fourier components, we find

o), p) = f dR[exp (—/1 L ﬂdtV(r(t) - R)) - 1}
_ f RS %[ f L itV — R)]m |

m=1 0

s s kal~~~Vkm6(§ki)

m=1 Mm! kg, -k i=1

B B
Xf...fdtl...dtm
0 0

x exp [iky - ¥(t))] - - - exp [iky, - ¥(2,,)].
(2.16)

Each term in the A expansion will involve many-
temperature Green’s functions of the form

. tm) = E{eikl'r(tl) ‘e eikm~r(tm)}

*
= Gk]_"'km(tli : ",tm).

Ko knlfLs

Since

exp [i:gn:l k;- r(t,.):l = cos (; k- r(t,-))
+ isin (Z K, r(ti))

and for every path for which
I(ty) =ro + X1, M) =T+ Xy, "
there is a corresponding path with

r(t) =1, —X;, () =Ty — X5, "7,
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then the imaginary parts cancel out becausery- > k; =
0. Furthermore,

|Gl < Eflexp [ik, - r(1)] - - - exp [ik,, - x(t,)]i} = 1.

2.17)

Each term in the A expansion will be majorized by

the absolute value of a product of terms of the type

on the right-hand side of Eq. (2.16) in which the

exponentials have been replaced by unity. Then the

A expansion will exist for all values of 4 if the following
conditions on the potential are satisfied:
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where « is a length representing the range of the pot-
ential. These conditions were derived by Doniach,?
who introduced a harmonic-oscillator potential which
was finally set to zero and used properties of oscillator
averages in order to prove the required properties of
G. It is easy to show that, when the conditions (2.18)
are satisfied, the p expansion also exists.

3. GAUSSIAN RANDOM POTENTIAL

For a particle in a potential ¢(r),

Z(B, 9D/ Zy = E{exp [— J; pdttp(r(t))j”. (3.1

By “Gaussian averaging” 7 we mean

f S9Z,(B, [9]) exp [— . f dr dr'g())pt)K (r — r')}

f 8¢ exp [—- % f dr dr' p(r) p(r)K(r — r’)jl

Q) SIMISP,
.o a3 —
(ii) Vil < (5) 7, (2.18)
<Zl(:3)> =
Thus,
B B
(Zu(B))/Zo = E{exp [ f dt, f d1,K(e(t) — r(tz))]}
(3.2)
where

fK(x — YK (y~—2)dy =6(x —2). (3.3)

Comparison with (2.3) shows that (3.2) “corresponds”
to the random scatterers case in the limit p — oo,
A— 0 such that pA? = const with the identification

K = 2% f ARV(R)V(R + 1),
when

f dRV(R) = 0. (3.4)

It has also been pointed out by Halperin and Lax®
that the Gaussian random potential is the high-density
limit of the random scatterers model as a consequence
of the central limit theorem.

The path integral (3.2) cannot be explicitly evaluated

for any physically interesting potential correlation
K~ If K satisfies the inequalities

M, < K'(r) < M,,
then (Z,(8))/Z, has corresponding bounds
&M< (ZB)IZo < (3.5)

and one easily sees that an expansion in 12 exists. One
can find a more useful lower bound using the in-

equality which follows from (2.5):
g g

Z(B)/Zo > exp [E{ f dn, f dt,K(e() — r(tz»ﬂ.
0 0

(3.6)
When X~ has a Gaussian form
2\ v/2 9
K1) = y ("—‘—) e (3.7)
T

where v is the dimensionality and | drK—*(r) = y, the
right-hand side of (3.6) can be evaluated to give in the
one-dimensional case

2m %. o
(Z(BNZy 2> — T
BV/Zo > exp [yﬂ(w ﬂ) { = +2m/m%}]
(3.8)
In two dimensions we have

(Z\(B))]Zy > exp [_(O%
™ m

% In {“ — (< + 2’”/’3)%}}. (3.9)
o+ (@ + 2m/B)*
In three dimensions we have

22 Bma®
(ZB)Zy > —- . 3.10
g P [w%(az + 2m//3)] 19

From (3.5) the upper bound in the case of Gaussian
correlation is given by

ZAB)Zo < exp [ﬁ% (“;)’2]

When o — 0, which can be considered as the limiting
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case of a long-range potential correlation, the upper
and lower bounds become identical and thus (Z,(8))
is obtained exactly in this limit. In the limit « — oo,
K~* becomesa d function and we can make a connection
with the work of Halperin and Lax® and Zittartz and
Langer,” who calculated the low-energy behavior
(E — — o0) of the average density of states n(E) in the
case of “white noise”:

K1) = 0(r). (3.11)

In this limit we obtain in the one-dimensional case
(3.8)

(Z\(B))|Zy > exp [yB(Bmm[2)}],  (3.12)

but the two- and three-dimensional bounds (3.9) and
(3.10) diverge as a— co (the exponent diverging
logarithmically and linearly, respectively). This is in
agreement with the density of states results®? which,
as E — — oo, predict a behavior

— 2—v/
n(E)Nexp[ const |E| ”:l’
14

which, from (1.16), will lead to a finite value for
(Z,(B)) in the one-dimensional case and to an infinite
value in three dimensions. The divergence in the two-
dimensional problem may be associated with the fact
that, as discussed by Halperin and Lax,8 in the case of
two- and three-dimensional “white noise,” the second-
order corrections to the variational energy diverge due
to short wavelength potential fluctuations. This leads
to an infinite constant in (Z,(f)) unless those fluctua-
tions are cut off below a certain wavelength, which is
the case if K~ is not a true 6 function.

A further lower bound on (3.2) may be obtained by
application of the methods used in Feynman’s
treatment of the polaron problem.? This leads to a
complicated expression which, however, has the
same behavior in the “white noise™ case as the bounds
(3.8)-(3.10). The expression (3.2) for (Z,(f)) also
satisfies the condition for applicability of the extension
of Feynman’s variational principle for the free energy
to include dissipative processes, which was introduced
by Doniach in his second paper.® This condition
is that (Z,(B)) is a convex-downward function of
any parameter, say 4, multiplying K in (3.2)

04Zy(B))04* 2 0,

which, from (3.2), is true for any function K-1.

(3.13)
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APPENDIX A

The free energy of a harmonic crystal can be written
in the form1®

F= f * doF(w)g(), (A1)

where F(w) is a smooth function of w and g(w) is the
distribution function of normal mode frequencies of
the crystal (eigenvalues of the dynamical matrix).
If, for simplicity, we consider a crystal with one atom
per unit cell, then we can write g(w) in the form

g(w) = 20G(w), (A2)
where
G(w?) = N —"1—2 N(w?) (A3)
dw
and
(02
N(o?) =f dx Y 8(x — 0*(k)) (A%
0 k
is the number of modes in the crystal with
(frequencies)? < w?.
In this Appendix we show the existence of
no(w?) = No(e?)/Q (A5)

in the limit where the number of atoms N in the
crystal and its volume €2 become infinite in such a way
that N/Q is constant. (Al)-(A4) then lead to the
existence of the free energy density (F/Q) in this limit.
The proof also applies to a crystal with random
masses or a random distribution of atoms on lattice
sites. :

For m identical crystals of cubic geometry each
with N atoms in volume €2, Np(w?) and the eigen-
frequencies are the same for each crystal. For the
system taken as a whole, the number of

(frequencies)? < w?,
Noa(@?) = mNo(e®) = f dx 3 8(x — wi(K),
0 k

when w,,(k) are the eigenvalues of a dynamical matrix
which can be decomposed into matrices referring to
the individual crystals alone, each having O(N)
elements in the case of finite range interatomic forces.

If the m crystals are joined together in some way to
form a new crystal J with mN atoms and volume m{2,
then

N (o) = f S 8(x — o)),
0 k

10 A, A. Maradudin, E. W. Montroll, and G. H. Weiss, Theory of
Lattice Dynamics in the Harmonic Approximation (Academic Press
Inc., New York, 1963).
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in which ! (k) are eigenvalues of a matrix which
differs from the above only by interaction terms
between component crystals. These interaction terms
correspond to O(N¥) elements since only surface
atoms will contribute such terms to the dynamical
matrix. By Ledermann’s Theorem!* the number of
eigenvalues of this matrix I, < w? will differ from the
number for the previous matrix w?, < w? by, at most,
the number of rows and columns which are changed,
ie., by less than «,N¥ where «,, is some number
which depends on m and on how the crystals are
joined but is independent of N.
Hence

nla = Nlg(@)mQ = Ng(@)/mQ + «,N¥mQ
= no(®) + Ryug(w?),

where
R, (0 ~ N¥Q.

Following the method of Griffiths,!! consider a simple
cubic lattice of lattice constant 1. Let the cube € for
s=2,3,4,---,be of volume Q, = 23*Q and contain
23N particles so that it is composed of eight cubes
Q. ;. The corresponding values of n(w?) satisfy an
inequality of the type

n(s)(wz) g n(s—l)(w2) + lR(s)(w2)l’
where

. lagl (2N
RV < BT

= ¢~
in which &, is the maximum possible value of «,.
Therefore

n(s)(wZ) < n(s—ll(w2) + CQ—%z—s.
Thus the quantity
n(s)(wz) + CQ—%z-s

is monotonically decreasing as s — co0. Since this is
bounded below by zero, it will approach a limit n(w?)
in the limit 5 — oo. By a method similar to that of
Griffiths, one can show that an arbitrary sequence of
cubes of increasing volume will yield the same limit
n{w?) as the particular sequence €, .

For a random crystal the above argument follows
through where each crystal has some particular
configuration 6 and one takes the average

(n(w%) = ;P(G)n(wz[f’]),

in which P(0) is the normalized probability of con-

11 R. B. Griffiths, J. Math. Phys. 6, 1447 (1965).
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figuration 0. It is easily seen that
(n(s)(wz» < (n(s—-l)(w2)> + CQ—.}fz—-s
and the argument follows as above.?

APPENDIX B

In this Appendix we shall prove the existence of the
thermodynamic limit of the free energy per unit
volume defined in (1.6) for a system with a Hamil-
tonian given in (1.1).

The problem here is more complicated than in the
case without scatterers, where the existence of the
free-energy density in the thermodynamic limit was
proved for very general interactions by Fisher'? and
Ruelle.*® While we need not assume any restrictions on
the interaction between the particles beyond those
necessary for the existence of the thermodynamic
limit in the absence of any scattering centers, we shall
assume that the potential V(r) between particle and
scattering centers satisfies the “strong tempering”
condition of Fisher'?:

Vir) <0 when r> D, (B1)
as well as the more usual condition that
f (7% — 1]dr < co. (B2)

Furthermore, we shall assume that the particles of
our system, of which there are M, are confined to a
cubical box with sides of length L, L3 = Q. The
scattering centers, on the other hand, are located
inside a larger cube of sides L + 2D, (L 4 2D)* = ',
centered on the original cube (. The probability
density for having precisely / scatterers at positions

R,, - - -, R, in some volume element w € Q" is assumed
to be given by
e—pwpl

PO) = PRy, Ry =—F,  (B3)

so that p is the average density of scatterers.
To prove the existence of
lim — B _ jiy IR ZO05 M, QD)
Q-+ Q' =0 Q,

for M/Q fixed under the assumptions (B1) and (B2)
and the special kind of boundary conditions we have
used requires only a small modification of the methods
of Fisher and Ruelle. We shall therefore give only a
brief outline of the proof. There are two parts to the
proof: (1) finding an upper bound on (In Z(Q"))/Q’

12 M. E. Fisher, Arch. Ratl. Mech. Anal. 17, 377 (1964).
3 D. Ruelle, Boulder Lectures 1963 (University of Colorado,
Theoretical Physics Institute, 1963).
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which is independent of Q'; and (2) showing that,
when eight cubes of volume Q' are put together to
form a larger cube of volume Q" = 23Q)" with 23M
particles in it, then

(In Z(y", 25M, 23Q))[ 23’
> (nZ(y, M, Q))/Q" + 0(Q"),
where y" is the configuration of scatterers in Q.
An upper bound on Z(y, M, Q') is obtained from
the condition that
Uy, +, 1) > —MD, O const, (B6)

for all values of the r,. This condition is required for
the existence of the thermodynamic limit of the free
energy in the absence of scatterers. Hence

(BS)

1

—{nZ(y, M, Q'
Q,<n (v »
1/ 1 J'_ . IPI\
={1 2 BEV (r R,)d] } B7
il AV
S%(D_l_l_ln(g)+g7pfle_ﬁV(R)_1!dR
<C,

pM®

SQ,+

(B8)
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where C is some constant independent of £ and use
was made of (2.5) in deriving the second inequality.
Having obtained the bound in (B8), we can now pro-
ceed with our construction of the larger cubes d la
Fisher and Ruelle.

The inequality (B5) is obtained by first noting that
In Z(y", 22M, 2%Q") > In Z'(y", 23M, 23Q)"), where Z’
is the partition function when the 23M particles are
constrained to be inside, and evenly divided between,
the original eight cubes Q,, i =1, -+, 8, of volume
Q. A lower bound on Z’ is now obtained using (B1) if
we neglect. the interactions between particles in
€, and scattering centers outside (2. The interaction
between particles in different boxes €2, is now bounded
by a term of 0(£2) which is independent of the con-
figuration of scattering centers. Finally, we obtain

8
InZ(y", 2°M, 2°Q") > 3 In Z(y;, M, Q) + o(€),

- (B9)

where y; is the configuration of scatterers in €2,. Due
to the independence of the distribution of scatterers
in the different boxes, averaging of (B9) now yields
(B5).
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Quantum Corrections to the Second Virial Coefficient at High
Temperatures
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The Laplace transform of exp (—pH) is the Green’s operator of the negative-energy Schrédinger
equation (H + W)~'. Conditions are stated under which a large |W| asymptotic series for the Green’s
operator can be inverse-Laplace-transformed term-by-term to obtain a small § expansion for exp (—BH).
This approach and the Watson transformation are used to calculate thefirst few terms of high-temperature
asymptotic expansions for the exchange second virial coefficient for hard spheres and for the Lennard—
Jones potential. The known results for the direct second virial coefficient for hard spheres are extended.
The Wigner—-Kirkwood expansion is calculated to order #® and used to calculate the direct second
virial coefficient for the Lennard-Jones potential through order 4°.

L. INTRODUCTION AND SUMMARY
The problem of calculating quantum corrections
to the second virial coefficient at high temperatures
has been only partially solved by previous authors.:

1 References to work prior to 1952 may be found in J. O.
Hirschfelder, C. F. Curtiss, and R. B. Bird, The Molecular Theory of
Gases and Liquids (John Wiley & Sons, Inc., New York, 1954), pp.
407-424. The problem has been considered more recently by H. E.
DeWitt [J. Math. Phys. 3, 1003 (1962)] and by F. Mohling [Phys.
Fluids 6, 1097 (1963)], who give references to more recent numerical
work.

The exchange contribution has been particularly
difficult, and it is only in the last year that Lieb,? by
calculating rigorous upper and lower bounds, has
obtained the leading term of an asymptotic expansion
for the exchange contribution in the particular case of

2 E. Lieb, J. Math. Phys. 8, 43 (1967). An upper bound to the
exchange second virial coefficient had been found previously by
S. Larsen, J. Kilpatrick, E. Lieb, and H. Jordan, Phys. Rev. 140,
A129 (1965).



1534 T. BURKE AND
which is independent of Q'; and (2) showing that,
when eight cubes of volume Q' are put together to
form a larger cube of volume Q" = 23Q)" with 23M
particles in it, then

(In Z(y", 25M, 23Q))[ 23’
> (nZ(y, M, Q))/Q" + 0(Q"),
where y" is the configuration of scatterers in Q.
An upper bound on Z(y, M, Q') is obtained from
the condition that
Uy, +, 1) > —MD, O const, (B6)

for all values of the r,. This condition is required for
the existence of the thermodynamic limit of the free
energy in the absence of scatterers. Hence

(BS)

1

—{nZ(y, M, Q'
Q,<n (v »
1/ 1 J'_ . IPI\
={1 2 BEV (r R,)d] } B7
il AV
S%(D_l_l_ln(g)+g7pfle_ﬁV(R)_1!dR
<C,

pM®

SQ,+

(B8)
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where C is some constant independent of £ and use
was made of (2.5) in deriving the second inequality.
Having obtained the bound in (B8), we can now pro-
ceed with our construction of the larger cubes d la
Fisher and Ruelle.

The inequality (B5) is obtained by first noting that
In Z(y", 22M, 2%Q") > In Z'(y", 23M, 23Q)"), where Z’
is the partition function when the 23M particles are
constrained to be inside, and evenly divided between,
the original eight cubes Q,, i =1, -+, 8, of volume
Q. A lower bound on Z’ is now obtained using (B1) if
we neglect. the interactions between particles in
€, and scattering centers outside (2. The interaction
between particles in different boxes €2, is now bounded
by a term of 0(£2) which is independent of the con-
figuration of scattering centers. Finally, we obtain

8
InZ(y", 2°M, 2°Q") > 3 In Z(y;, M, Q) + o(€),

- (B9)

where y; is the configuration of scatterers in €2,. Due
to the independence of the distribution of scatterers
in the different boxes, averaging of (B9) now yields
(B5).
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Quantum Corrections to the Second Virial Coefficient at High
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The Laplace transform of exp (—pH) is the Green’s operator of the negative-energy Schrédinger
equation (H + W)~'. Conditions are stated under which a large |W| asymptotic series for the Green’s
operator can be inverse-Laplace-transformed term-by-term to obtain a small § expansion for exp (—BH).
This approach and the Watson transformation are used to calculate thefirst few terms of high-temperature
asymptotic expansions for the exchange second virial coefficient for hard spheres and for the Lennard—
Jones potential. The known results for the direct second virial coefficient for hard spheres are extended.
The Wigner—-Kirkwood expansion is calculated to order #® and used to calculate the direct second
virial coefficient for the Lennard-Jones potential through order 4°.

L. INTRODUCTION AND SUMMARY
The problem of calculating quantum corrections
to the second virial coefficient at high temperatures
has been only partially solved by previous authors.:

1 References to work prior to 1952 may be found in J. O.
Hirschfelder, C. F. Curtiss, and R. B. Bird, The Molecular Theory of
Gases and Liquids (John Wiley & Sons, Inc., New York, 1954), pp.
407-424. The problem has been considered more recently by H. E.
DeWitt [J. Math. Phys. 3, 1003 (1962)] and by F. Mohling [Phys.
Fluids 6, 1097 (1963)], who give references to more recent numerical
work.

The exchange contribution has been particularly
difficult, and it is only in the last year that Lieb,? by
calculating rigorous upper and lower bounds, has
obtained the leading term of an asymptotic expansion
for the exchange contribution in the particular case of

2 E. Lieb, J. Math. Phys. 8, 43 (1967). An upper bound to the
exchange second virial coefficient had been found previously by
S. Larsen, J. Kilpatrick, E. Lieb, and H. Jordan, Phys. Rev. 140,
A129 (1965).
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hard-sphere interactions.® The present paper employs
Laplace transform methods to give, for the first time,
a constructive procedure for the computation of a
high-temperature asymptotic expansion of the ex-
change second virial coefficient for any potential
V(r) which is more strongly repulsive than r—* as
r— 0. An application of these methods to the direct
second virial coefficient simplifies the derivation of
known results to the point where extending them
becomes feasible.

Section Il discusses a general approach to the
computation of high-temperature expansions in
statistical mechanics which uses the Laplace transform
to relate the Green’s function of the Schrodinger
equation at large negative energies to the thermal
Green’s function at high temperatures. Section III
formulates the second virial coefficient problem (the
relation of the present formulation to the usual phase-
shift formulation is demonstrated in Appendix C).

Section IV is devoted to the direct second virial
coefficient for hard spheres. The Green’s function of
the negative-energy Schrddinger equation is decom-
posed into partial waves (sum over /). Because the
computation is carried out at large negative energies,
where the radial equation has no turning points, the
Debye series for the modified Bessel functions provides
a large negative-energy asymptotic series for the
solutions of the radial equation which is uniformly
valid in /. After separating off certain singular parts
and treating them exactly, the sum over / is performed
with the Euler-MacLaurin sum formula. The first
six terms of the resulting high-temperature asymptotic
expansion of the direct second virial coefficient for
hard spheres are given in Eq. (53).

In Sec. V, the Laplace transform and the Watson
transformation are used to give a general method
[the general results are in Eqs. (57)-(60)] for the
computation of the exchange second virial coefficient.
Results are computed explicitly for hard spheres
[Egs. (67)-(71) and Table I] and for the Lennard-
Jones potential [Egs. (72), (79), and (81)-(83)].

In Sec. VI the terms of the Wigner-Kirkwood
expansion are calculated through order 4#° [Eq. (92)]
by methods considerably less laborious than those
used by previous authors. The integrals which appear
are evaluated to give a high-temperature expansion
of the direct second virial coefficient for the Lennard—
Jones potential [Egs. (93) and (94)].

8 Numerical calculations on the hard-sphere gas have been per-
formed by M. Boyd, S. Larsen, and J. Kilpatrick, J. Chem. Phys.
45, 499 (1966). The first few terms of the high-temperature asymp-
totic series for the direct second virial coefficient of a hard-sphere
gas have been calculated by R. A. Handelsman and J. B. Keller,

Phys. Rev. 148, 94 (1966); their results were extended by P. C.
Hemmer and K. J. Mork, Phys. Rev. 158, 114 (1967).
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II. BASIC IDEA

The basic concern of quantum-statistical mech-
anics is the operator e ?#, where g = I/kT and H
is the Hamiltonian. The Laplace transform of this
operator,

(H + W)—l =f e—ﬂVVe—ﬂH dﬂ’
0

is the Green’s operator of the negative-energy Schro-
dinger equation. Our method is based on the fact that,
if /(W) is the Laplace transform of () so that
7o = [“errie) ap M)
then the behavior of f for small B determines the
behavior of f for large W and, under some conditions,
conversely. We shall be interested in the possibility
of inverse-Laplace-transforming term-by-term an
asymptotic expansion of (H + W)™ for W— o to
obtain an asymptotic expansion of e?H for 8 — Ot.
When such term-by-term inverse-Laplace transforma-
tion can be justified, high-temperature asymptotic
series for thermodynamic quantities can be calculated
by studying the Schrédinger equation at large negative
energies.
To lend some precision to the discussion we state a
definition and consider three theorems.

Definition: That f(z) has the asymptotic expansion
f@) ~2 a,p(z) for z-—z,
n=0

in the domain D means that

(a) lim (pn+1(z)/(pn(z) = 0’ n=0, 1,2+ -and
z—zoin D
® tm [16) = Fus o] fru =0

m=0,1,2---.

The functions ¢,(z) are commonly called gauge
functions. The statement that the small 8 behavior of
f(B) determines the large W behavior of AW) is
contained in the following theorem.

Theorem 1: Assume that
B ~3, apuP) for 0",

and that there exists a real constant W, such that, for
Re W > W,, e P"f(B) and e " ¢,(8) are bounded
and integrable on (0, ) so that the Laplace trans-
forms f(W) and @, (W) exist. Assume further that
@) >0 for >0 and that e @, (W)— v as
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W — oo for each § > 0. Then
FW) ~3 a,§,(W) for W — +co.
n=0

A somewhat more general version of Theorem 1 has
been given by Erdelyi.? For completeness, we include
a proof in Appendix A. In the special case where the
@,() are powers of f, Theorem 1 is known as
Watson’s lemma.® That a converse to Theorem 1 does
not hold without additional conditions is clear from
considering the function f;(8) = ¥ sin (1/8), which
has as its Laplace transform

AW) = atw-texp [—(2W)H] sin [CW)H].
If we take ¢,(f8) = g, then ¢, (W) = n!W-""1and

lim f(W)/¢ (W) =0
W40
for all n, but

lim fi(8)/ @.(B)
80

does not exist for any n > —4. Clearly the converse
of Theorem 1 is true (and is demonstrable by contra-
diction) if an asymptotic expansion of f(f) with
respect to the gauge functions ¢,(8) exists. The
necessary existence theorem can be quite difficult to
prove when only f(W) is known explicitly. However,
if the series for /(W) is a convergent one, the following
theorem® may be used to justify term-by-term inverse-
Laplace transformations.

Theorem 2: Let
FW) = 3 a,5.,(W)

be a convergent series for Re W > W,. Assume that
(a) all integrals

Fa(W) = f et (B) B

exist in the half-plane Re W > W;, (b) that the
integrals

valW) = f e 1B dB

exist in the half-plane Re W > W;, and (c) that the
series > v,(W,) converges. Then

fB) = éoan%(ﬁ)

4 A. Erdelyi, Asymptotic Expansions (Dover Publications, Inc.,
New York, 1956), pp. 29-34.

5 G. N. Watson, Proc. London Math. Soc. (2) 17, 113 (1918);
E. T. Copson, An Introduction to the Theory of Functions of
a Complex Variable (Oxford University Press, London, 1935),
pp. 218-219.

8 For a proof of Theorem 2, see G. Doetsch, Einfiihrung in Theorie
und Anwendung der Laplace-Transformation (Birkhduser Verlag,
Basel und Stuttgart, 1958), p. 186.
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converges absolutely for almost all 8 > 0, and f(W)
is the Laplace transform of f(B).

For convergent series, Theorem 2 guarantees
the existence of an expansion of f(8) with respect to the
gauge functions ¢,(8). If ¢,(8) > 0 for 8 > 0, the
determination of small § behavior by large W
behavior then follows. The case of asymptotic power
series is covered by the following theorem which
involves only f(W).

Theorem 3: Let f(W) be the Laplace transform of a
function f(B). Assume that /(W) is analytic except on
the real axis for W < W,, and that f(W)* = f(W*).
Assume further that

fw) ~ % a,Wn™t

uniformly in arg W for |W|— oo in the right half-
plane and uniformly in Re W for Im W — oo in the
left half-plane where «,,,; > «, > 0 for all n. Then

S ~ 3 a0, — 1) for 0%

Theorem 3 is proved in Appendix B. Generalizations
of Theorem 3 to cover asymptotic series with respect
to other gauge functions can be obtained by generaliz-
ing the proof of Appendix B.

Before turning to the specific problem of the second
virial coefficient, we remark that for some cases the
Laplace transform of some of the matrix elements of
e~PH may not exist (this is the case in Sec. IV). When
this happens, the present methods may still be useful
if the singular part can be subtracted off and handled
exactly.’

III. SECOND VIRIAL COEFFICIENT

We begin with the formulation of Boyd, Larsen,
and Kilpatrick,® and write the second virial coefficient
B in the form

B = Bdirect + Bexcha (2)

where

Byirect = AN f Pl - 226@ 8] ()

and
Boion = FAN(Q2S + 1)‘12%13 f &G, —r; 8). (4

7 After the present manuscript had been submitted, the author
became aware of a paper of J. Lavoine [Ann, Inst. Poincaré A
(France) 4, 49 (1966)] on the Abelian and Tauberian asymptotics
of the Laplace transform. Theorem 3 is a special case of Lavoine’s
Theorem VI. Readers of the present paper interested in the use
of the Laplace transform to replace a study of e BH by a study of
(H 4+ W)~ should find his paper of considerable interest.

8 M. Boyd, S. Larsen, and J. Kilpatrick, Ref. 3, Egs. (12)-(14).
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The minus (upper) sign in B.,., is associated with
Bose statistics and the plus sign with Fermi statistics.
Here S is the spin, 1 = (2wA%8/m)* is the thermal
deBroglie wavelength, and

G(r,x'; p) = (r| exp (—BH,e)| ¥'), %

H, = _(ﬁzl’n)v2 + V(l’) (6)

is the Hamiltonian for the relative motion of a pair of
particles of mass m. The Laplace transform

Gr,v; W) = f we‘ﬁWG(r, r'; p)dp

is the Green’s function of the negative-energy Schro-
dinger equation:

[—(#@m)V2 4+ V(&) + WIG(@,v'; W)= 6@ —r'). (8)

where

(M

Equation (8) follows either from the general con-
siderations of Sec. II or from Laplace-transforming
the Bloch equation satisfied by G(r,r’; ). We now
introduce
g, v'sy) = @ui2fm)G(r,v'; W),
y = K mW), ©)
U(r) = (m/E®)V(r).

Equation (8) then becomes

[V2 — U) — ?1g(r, ¥'; ) = —4nd(@ — r').  (10)

If the potential ¥(r) and the boundary conditions are
spherically symmetric, the solution of (10) can be
written in the form

0

g(r,¥';p) = 3 (21 + 1Py(cos )g"V(r, 5 ), (11)

=0
where © is the angle between r and r’. In spherical
coordinates,
6 — ') = r20(r — r’) csc 66(60 — 0')6(¢p — ¢").
(12)
By inserting (11) and (12) in (10), multiplying by
P(cos @) sin 0, and integrating over 6 and ¢, it
follows that g¥ satisfies®

(€ = )0 r'sy) = —r7(r — 1),

1d{,d a+1
=—{r—)—-\——+U»| U4
r dr( dr) [ r (r):| (14)
If u, is a solution of (£ — 9?u = 0 which satisfies
the inner boundary condition, and u, is a solution of
(£ — y»u = 0 which satisfies the outer boundary

(13)

where

£

® This method of obtaining Green’s functions is discussed by
P. M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill Book Co., New York, 1953), Vol. I, pp. 825-833.
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condition, then the solution of (13) is?

g, 5 y)

— _ 1 u(Nuy(r); r<r,
PAL(), ()] {uzmul(r'); r>r, 19
where
Auy, uy) = (uyuy — uyuy) (16)

is the Wronskian of the two solutions.
An alternate form of the solution to (13), which
will be of use later, is®
. Pa(H)Pulr)
gm(?’, ryy) = 2—2———5— ’.
n Y =7

n

)

where the ¥, are the normalized eigenfunctions of L:
£y, = vayn-

In the case of free particles, denoted by a subscript
zero, the solution of (£, — »?u, = 0 which satisfies
the inner boundary condition (regularity at r = 0)
is r“*IH%(yr); the solution which satisfies the outer
boundary condition (regularity at co) is r—%KHé(yr).
Hence, forr < r’,

g(r, '3 9) = () (K aGr). (18)
If (18) is inserted in (11), we obtain
g, r';y)
= 20(21 + 1)P,(cos @)(rr’)_&ll AynKa(yr),
1=
r<r. (19)

An alternative form is

g, r5y) =Ir—r[Texp(—yr—r|). (20)

The relation of the present formulation to the
usual phase-shift formulation given by Gropper and
by Beth and Uhlenbeck' is shown in Appendix C.
We turn now to specific interactions.

IV. Bgireet FOR HARD SPHERES

For hard spheres of radius a, the potential ¥(r) is
replaced by the condition g(r,r'; ) =0, r < a. If we
decompose g as g = g, + g,, We have g, = —g, for
r<a,andforr > a,

gt 5 9) = —(r)? 3 (21 + DP(cos ©)
1=0
X [13(ya)/[ Ky 3 (ya@) 1Ko 3 (y 1K 3 (yr).
(21)
For large ya, the sum in (21) does not begin to
10 1. Gropper, Phys. Rev. 51, 1108 (1937); E. Beth and G. Uhlen-
beck, Physica 4, 915 (1937). The phase-shift formulation may also

be found in K. Huang’s textbook Statistical Mechanics (John Wiley
& Sons, Inc., New York, 1963), pp. 303-311.
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converge until / ~ ya. We now show how to handle
(21) for the case r = r'.

The computation of By;,... from (3) is easier if we
can perform the integration over r before inverse-
Laplace-transforming back. First we must separate off
those pieces of g(r, r; y) for which this r integral is
not finite. To begin with, we note that go(r, r; y) = .
From Eq. (21),

g@nw=~ﬂ§w+nmmmmmWn

X [Kan)P. (22)
We note that g,(r,r;y) has a first-order pole at
r = a: For fixed x, |v| — o0, we have the asymptotic
estimate

L) ~ 2T + DT (23)
Using I'(»)I'(1 — ») = 7 csc (mv) and
Kyx) = §mesc (m)ll_(x) — I(x)], (24
we see that for fixed x, {»] — oo with Re» > 0,
K (%) ~ 30(n)(x/2)™. (25)

From (23) and (25) we see that for /> yr > va, the
summand of (22) becomes —r~1(a[r)*+1. Hence (22)
converges for r > a, but diverges when r = 4. Thus,
for r sufficiently close to a, only the terms for which
(23) and (25) are valid estimates matter, and we see
that

= —ar”*[l ~ (a/’T™. (26)

The existence of a pole at r = a is easily understood
from the viewpoint of the method of images, which is
applicable to the |r — '[! singularity of g, which
produces the delta function on the right-hand side
of (10) upon application of the Laplacian. Both g,
and a piece of g, which contains the pole at r = a
must be separated off before we can perform the
integration over r. Hence for r > a we make the
decomposition
g= g+ g +g" @7
with corresponding decompositions of G and G.
Here gV is a piece of g, which contains the pole at
r = a. We exploit our freedom to choose any g
which has the same residue at r = a as g, and pick a
gV which gives the first quantum correction found
by Uhlenbeck and Beth'! exactly with nothing left
over:
a® exp [—2y(r — a)]
2r¥(r — a) ’

11 G, Uhlenbeck and E. Beth, Physica 3, 729 (1936).

(28)

g, 1) =

ROBERT NYDEN HILL

Inverse-Laplace-transforming back, we find
Go(r,v'; f) = 283 exp [~ }nA 2 r — X[2]. (29)
Hence
Go(r, 1; B) = 27113, (30)
and, for r > aq,
GO, 1; B) = —2-132-2 exp [—27A7%(r — a)?].
(31)
Using (31) in (3), remembering that G = 0 for r > 0,
we get

Bjirect = %N”ras[l + "—3“(&)] + Bfizi:'ect’

2/2\a 32)

where

B = —2NI*| GO, r; famr® dr. (33)

We have now succeeded in separating out the pieces
of G for which the integration over r in Eq. (3)
cannot be done before inverse-Laplace-transforming
back; the r integration in (33) can be performed on
GO, r; W),

To compute g = g — g% from (22) and (28),
we expand (28) and define

ala - » B L 2141
¢V, 1; y;L)= — .%_;3_12 o 2= )12‘; (%) . (34)
Similarly, we define

L
gr,r;y; L) = —r‘lzo(ﬂ + DI (pa)/ Ky 3(ya)]

K 2 (35
Then, x [Kia(yn. (35)

w0
f g, 1y y) dwr® dr

= lim U gr, v; y; LYdnr® dr
a

L—=w
——f gV, x; y; Ddmr® dr}. 36)

By using the finite-geometric series to perform the
sum in Eq. (34), one can easily show that

f g, 1y y; DAnridr = —2ma* In(Ljya) + O (ll:) .

(37
By using the indefinite integral®

fmmﬁw=ﬂ@+9wnw—mwﬂ
(39)

12 W, Magnus, F. Oberhettinger, and R. P. Soni, Formulas and
Theorems for the Special Functions of Mathematical Physics
(Springer-Verlag, Berlin, 1966), p. 88.
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and the Wronskian relations
LKy (x) = I(x)K,(x) = —x77,

one can show that

(39

fwgs(r, r; y; Lydnrtdr = 27-ra22L F3(ya), (40)
where F, is defined by |
Fi(x) = 21:{ (1 + 1;) LOOKL(x) — LGOKX)
X
+ x-IKxx)[Kv(x)]—l}. (41)

For x large, F,(x) is a slowly varying function of ».14
Thus we can perform the sum in (40) by using the
Euler-Maclaurin sum formula®®:

S 10 =[5t s + 415m) — o)

izB—kk); [f(m)(2k-1) _f(n)(2k—1)],
(42)

where the numbers B, are the Bernoulli numbers:
By =1/6, B, = 1/30, B; = 1/42, etc. For x large,
Debye’s series!® provide asymptotic expansions of
I(x), K(x), I'(x), and K](x), which are uniformly
valid for 0 < » < o0 and can be used to compute an
asymptotic expansion of F,(x) uniformly valid in »
for large x. The needed uniform approximation is
much more easily obtained for the modified Bessel
functions I, and K| than for the J, and Y,, which
appear in the other authors’ formulations of the
problem, because the modified Bessel equation has
no turning points. This absence of turning points
from the relevant radial equation is one of the
advantages of the present Laplace-transform method,

13 W. Magnus, F. Oberhettinger, and R. P. Soni, Ref. 12, p. 68.

14 This constructive interference of the various partial waves on
and near the caustic 6 = 0 gives rise to the phenomenon of “the
glory” in the corresponding optical problem.

15 J. E. Mayer and M. G. Mayer, Statistical Mechanics (John Wiley
& Sons, Inc., 1940), p. 431; E. T. Whittaker and G. N. Watson,
Modern Analysis (Cambridge University Press, Cambridge, Eng.,
1952) 4th ed., pp. 127-128. The modification of the Watson trans-
form used by V. A. Fock [Sov. Phys.—JETP 9, 255 (1945); re-
printed in Electromagnetic Diffraction and Propagation Problems
(Pergamon Press, Inc., New York, 1965), (pp. 191-212] and by W.
Franz [Z. Naturforsch. Sa, 705 (1954)] in the illuminated region of
the corresponding optical problem is not useful here because it
depends on the existence of a saddle point which arises from de-
structive interference between various partial waves away from
the caustic 6 = 0.

16 W. Magnus, F. Oberhettinger, and R. P. Soni, Ref. 12, p. 140;
M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables (Dover
Publications, Inc., New York 1965), p. 378. The Debye expansions
are also uniformly valid in arg x? as Tx“[ - o0 with Re x* > 0 and
uniformly valid in Re x2 as Im x% — o0 with Re x% < 0, so that the
conditions for the use of Theorem 3 to justify term-by-term inverse-
Laplace-transformation of (52) are satisfied.
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which permits one to work with the Schrddinger
equation at large negative energies.
Debye’s series have the form

I,(x) ~ Q) 362 + xt

x e“kio[t_"uk(t)](vz + xB)7H2,
K(0) ~ (rf2)6° 4 it

x & éo[(—t)"‘uk(t)](vz + xR,
(%) ~ (277)“*;-1(»2 + )t

x ee‘lg)[rkuk(t)](v2 + Xt
KY(x) ~ —(W/Z_)%x“l(f + %)

x e—“kio[(—t)"kvk(t)](vz + R (43)

where
= (» 4+ x®)t — ysinh~(y/x)
and
t = v(»* + x¥)4

The polynomial coefficients u,(¢), v,(¢) are determined
recursively!? from

) = 41 = () + 1 f A — 5Pu) db,

v(1) = w () + (1 — Db, (1) + tu (5], (44)

where u,(t) = 1. Using the series (43) in the definition
(41) produces the asymptotic expansion

R@~2 ﬁ {(FHED + 7t — 20,(0)]
X (xz + 1’2)_(k_1)/2}- (45)

The coefficients &, arise from multiplying the series
for I, and K, ; the 7, come from the term I'K!. We

have
&

&) = X (= D' (Du(0),

=0

) = 2 (= 1o (i) (46)

The coefficients {;, come from dividing the series for
K, and K,, and are most easily computed recursively
from

k-1
L) = (=1)v(t) — go( — D (O4(1). (47)

17 M. Abramowitz and I. A. Stegun (Ref. 15, p. 366) tabulate the
first few u,, and v,.
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The first few coefficients are
fan() =0, &) =1, &) = }3(1 — 612 + 5t%),
E,(t) = (1/128)t(27 — 580¢2 + 217014

— 2772¢% + 1155¢8);
Noi1(t) = 0, 7mo(t) = 1,
na(t) = $%(=3 + 102 — 714),
74(t) = tst(—45 + 812¢% — 2790¢* 4 3388¢¢

— 1365¢%);

Linn=1, L) =21 —-1),
$o(t) = $3(—1 + 612 — 519,
{3(2) = 323(1 — 13¢2 4 27t% — 15¢9),
Ly(t) = tEst(—25 + 55612 — 2078¢*

+ 2652¢% — 1105¢%),
{5(2) = #15(13 — 43912 + 255014 — 551448

+ 5085¢8 — 1695¢10),

Using these coefficients, (45) becomes

3

Fv(x) = — v _ P
045 6+
e i
(—2—:1,__2)g [—9° + 35'x% — 4% + 1x°)
»? + x%)*
+ -l%Llﬂxs _ %_so_xsl + vo[(vz + Xz)—%], 48)
For v & x, (48) can be re-expanded to get
4 1;3 " 1
=t ™ 0(;5)‘ (49)

Using the Euler-Maclaurin sum formula (42),
writing

LLF”(x) dv =LLF J(x) dv -—Jij(x) d,

and using (49) for 0 < » < }, we obtain

L LF i 1
F = -—
SFui) = [ b= 5
17 1 1
- o= of{=}. (50
swori + ) + o) @
The integral in (50) can be performed by using (48)
and the formula

©_o"dy T(m+ D2 (n—m—1)/2]
o (x* 4 )" 20(n/2)x™ " ‘

(51)
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Insertion of the result in (40) yields

f gJr, r; y; LYdnr® dr

2 1 2
=2 az{—ln Liva) — —=— —
7 L) =5 ™ 2y ¥ 31500

1 1 1
- +0(— o(=|i. (52
e e B ) M
Using (37) and (52) in (36), letting L — oo, and
inverse-Laplace-transforming back yields finally

3 /2 1/2\
B = 7|1+ 755 (0) + 2(()

vl -l
16 77\/5 a 105#2(a)

1 AV PN
*aamgals) () @
The result (53) is in agreement with the numerical
results of Boyd, Larson, and Kilpatrick.? All but the
last coefficient [1/(6407%\/2) = 0.0001119] have been
obtained analytically by previous authors.’® Clearly
additional terms can be calculated by computing
more of the polynomials &,(¢), 7,(¢), and {,(¢) from
(44), (46), and (47), although this becomes an
increasingly tedious task with increasing k.

V. EXCHANGE SECOND VIRIAL
COEFFICIENT

The computation of g(r, —r;y) for large y is
easily done with the aid of the Watson transforma-
tion.»® We consider only hard spheres and potentials
more strongly repulsive than r—2 as r — 0. The original
series (11) does not converge for r = r’ because of the
singularity of g(r,r’; y) atr = 1’; thus we keepr < r’
until the transformation is completed.

We begin by extending the domain of definition of
g®¥(r, r'; y) to complex / by means of the differential
equation (13), wherein we replace / by v — } where »
is an arbitrary complex number. We set ® = = in the
expansion (11) and exploit the fact that — sec (v)
has first-order poles with residue (—1)' at » =
I+ % to replace the sum in (11) by a contour

18 G. Uhlenbeck and E. Beth, Ref. 10, obtained the (A/a) term.
The (A/a)® term, apart from a missing factor 2, was obtained by
F. Mohling, Ref. 1. The correct coefficient 1/mtogether with the (Ala)?
term, was obtained by Handelsman and Keller,Ref. 3; the (/a)* term
was obtained by Hemmer and Mork, Ref. 3, using the method of
R. A. Handelsman and J. B. Keller, viz., an expansion of the
therinal Green’s function (5) and its boundary conditions in powers
of (4/a).

19 G. N. Watson, Proc. Roy. Soc. (London) 95, 83 (1918). The
application of the Watson method to quantum mechanics initiated
by T. Regge is discussed by R. G. Newton in The Complex j-Plane
(W. A. Benjamin, Inc., New York 1964).
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F1G. 1. Contours for the Watson
transformation.

)
S
@]

(@]

integral:
g(r,x';y)

= if v sec (m:)g‘”’%’(r, r;y) dr.
=7 Ci+Cs
(54)

The contour C; + C,, which encloses the positive
real axis, is indicated in Fig. 1. Now I(/+ 1) =
»2 — }; hence the differential operator in (13) is even
in ». Furthermore, the boundary conditions for
r— o and for r -0 do not involve ». Hence the
solution g‘“‘%’ is an even function of »,2° from which
it follows that the contour C, can be replaced by its
reflection C; traversed in the indicated direction.

For » pure imaginary, the centrifugal potential
(»* — })r—? becomes attractive, giving rise to a bound
state® and a pole in the Green’s function g%
(r,r’; p). For sufficiently large real y, these poles on
the imaginary axis are the only singularities of
g regarded as a function of the complex variable
».22 We now replace the contour C; + C; by the
contour C, which surrounds these poles on the
imaginary axis. We can now let r —r’. We compute
the residue of g~¥ by using (17); with y fixed, the
poles occur when y,(¥) = y. The residue is

—%Vzl(a”/a)’n)'/’:(r)'/’n(’/)

We denote the values of » at which these poles occur
by ix,(y). Thus we obtain

g(r, —r;y) = 7y X o, sech (ma,)(@a,/9y) (),
" (55)
where the sum runs only over the positive «,,.
The complex Laplace inversion integral gives

1 Wotio
G(r,r'; f) = P f7G(x, ' W) dw

i Wo—ico

1 yo+ico 27,2 , p
= i e P (2")g(r, r';y)y dy,
(56)

20 This happens only for potentials more strongly repulsive than
r—® as r — 0, since only for this case is the boundary condition as
r— 0 independent of ». See R. G. Newton, Ref. 18, p. 22, and
footnote 2 of Chap 4.

21 For potentials more strongly repulsive than r~2 as r —» 0, see
R. G. Newton, Ref. 18, p. 49.

22 This statement, as well as the replacement of C, 4 C; by C,,
are justified in Appendix D.
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where the second equality follows from using (9) and
deforming the image in the y plane of the original
contour in the W plane to lie parallel to the imaginary
axis. We now use (55) and (56) in (4). The r integration
can be done trivially by virtue of the fact that the
v, (r) are normalized radial functions:

f fw,(MErtdr = 1.
0

Thus we obtain

N
Bexch_ :F2S+1§A"’ (57)
where
_2‘ 3 Yot+ic0
= =i [ gy ew LNy 69
with e
2.(y) = ., (¥)0a,(y)[0y (59
and
i) = % ~In[2cosh ma,(y)]).  (60)

At high temperatures, the integral in (58) will have
a saddle point for large real y which can be exploited
to evaluate 4, by the method of steepest descent.
Such an evaluation, when explicitly carried out,
verifies that only the first term in (57) is important at
high temperatures as is expected from the discussion

of Sec. II.
A. Hard Spheres

For hard spheres of radius a, bound states occur
when the function K (yr), which satisfies the boundary
condition for r— oo, also satisfies the boundary
condition of vanishing at the surface of the sphere.
Hence the a,, in this case are determined by

Kioo(va) = 0. (61)

[The fact that g% has a pole when (61) is satisfied is
also clear from (21).]

An asymptotic series for the roots «,(y) can be
obtained from the Nicholson-type expansion of
K,,(x), which has the form??

Kim(x) = ﬂe‘vw/Z(%x)—*[éj( — 1)’p,(£)(—4}ix)‘2’/3:|

X Ai(pe %) 4 0[(-—ix)*2‘”+”"3],
where

p = 3.(~ a4,

£=i(x — p(—}ixy L.

23 W. Magnus, F. Oberhettinger, and R. P. Soni, Ref. 11, p. 145.
See also, C. B. Balogh, thesis Oregon State University, June 1965;
C. B. Balogh, Bull. Am. Math. Soc. 72, 40(1966); S.1. A. M. J. Appl.
Math. 18, 1315 (1967).
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The p, and g, are polynomials. We only need the g,,
the first few of which are?

qo(8) = &, q1(&) = ¥8&%,

g:(8) = 16758 + tho,

93(8) = zgssoost + m5vs6,

g:(8) = 32744250055 + Teieresét

The roots «, occur when pe—2"/3 is equal to a zero of
the Airy function. Inverting the series for p yields
for the nth root of K, (ya)

a,(y) = ya + fu(ya)* + HBAyay?
+ (F — shofya)™
+ (—st8oBn + sH BN + 04,
(62)
where —238,, is the nth root of the Airy function:
Ai(=2%8,) = 0. (63)

For (4/a) « 1, we evaluate the integral in (58) by
steepest descent.?® With an error of the same order
as that already inherent in the method of steepest
descent, we replace (60) by

Fo) ~ Qm)71 237 — o, (). (64

We choose y, in (58) to be the saddle point; it is the
root of £} (y,) = 0. Using (62) and (64)

Yoa = (”—;) + 1B, (1;—‘-)% — F5P2 (’1“) 3
4 ﬂn)( )
”(z)

+(— +

1

“lo

303467
9185400

+ (7888 —
+o[(3)]

Expanding f, and g, in Taylor series about p, in
standard fashion and performing the integration in
(58) yields

A, = 47 exp [£. ) el S (yo)/w]-*
— DI i) + Ayl
X [Bf 2(vo)gn(ye) + H(r0)g.(vo)] + O(yo® “)}
(66)
Working out the expansions of the quantities in (66)

(65)

244, and ¢, are from W. Schdbe, Acta Math. 92, 267 (1954),
in particular, p. 290.

25 Morse and Feshbach, Ref. 8, pp. 437-443. More rigorous
discussions based on Watson’s lemma are given by A. Erdelyi,
Ref. 4, pp- 34-41, and by E. T. Copson, Ref. 5, pp. 330-331.
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TasLE I. Calculated values of 4,/(§7a® compared with corre-
sponding values of B¥, (see Ref. 3).

Ha Ay/(ma®) —B&en

0.875 1.167 x 10~ 1.16 x 1012
1.000 4.481 x 107 4.4840 x 10
1.250 7.29 x 10-8 7.3070075 x 10-®
1.500 5.66 x 10-¢ 5.68623166 x 10-¢
1.750 9.7 x 10-5 9.830673706 x 10~*®
2.000 7.2 x 10~* 7.332542607 x 10—
3.000 5.3 x 1072 5.7408314497 x 10-2

yields finally

A, = 4ma*h, exp (f,), (67)
where
h, =14 328 (ﬂ_a)"%_*_ 13062 (la o
n 8 Un i 405Mn J)
7 . -
+ 81—71' ﬂn (%a) - 3?5?45/93; (ﬂ)
+o ()] )
and
o= el (%] +5 (12§+-4, » (m
n 2 A. n 1 ) 45 n( ). )
—2
+ (A — rHH5:) (”7")
+ (—xbth, + et ()
0 ”—")_137. 69
+o[(3 (69)

The roots of the Airy function are tabulated by
Abramowitz and Stegun.?® Using their numbers
yields g, = 1.85576, B, = 3.24460. Using this S,

hy = 1 + 0.627394(A/a)s + 0.0522153(A/a)3
+ 0.00112413(4/a)s* — 0.00165598(4/a)*
+ O[(4/a)*1,
fi = —15.5031(A/a)2 — 12.5056(4/a)~}
—0.448339(4/a)¥ + 0.0339141(2/a)?
—0.00492278(A/a)’s* + O[(A/a)*].
The results of comparing 4,/(§7a®) calculated from
these series with the high-speed computer calculations
of BY , by Boyd, Larsen, and Kilpatrick® for a few
values of (4/a) are given in Table I. A4, is negligible
compared to A4, for these values of (4/a). Clearly
the agreement worsens with increasing (4/a). The fact
that our methods guarantee only an asymptotic

series for 4, makes it unclear whether calculating
additional terms would improve the agreement.

(70)

Qy)

28 M, Abramowitz and I. A. Stegun, Ref. 15, p. 478.
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B. Lennard-Jones 6-12 Potential

Next we consider the potential
V(r) = Vol(ro/r)'® — (rofr)°]: (72)
If we put / = ip — }, the relevant radial equation is

2 2

St = [P = gy e =0
(73)
As p increases with y large and fixed, the potential
well {[mV(r)/A*] — (p* + D)/r?} deepens until its
bottom is below y2 and the first bound state occurs.
Additional bound states occur as the well deepens
further. For y large, this happens for p large; for p
large it is a good approximation to expand in Taylor
series about the bottom of the well, which occurs at

Pmin = Foot[1 — (1/20) + (15/4000)0® + O(a)],
(74)

where

o = [6mVyrih ¥ (p® + DR

The result of expanding about r;, is

{lmy(")[K] - (»* + z)/rz}
= 100" + Dry*{—&o {1 + 3o + 00" + O(c”)]
+ o ¥[1 + 1o + O(A)x® = 32671 + O(c)x®
22071 + 0()x* + O(x")}, (76)
where x = (r — r)/re. If (76) is inserted in (73),
one obtains an anharmonic-oscillator equation in
which the anharmonic terms can be treated as small
perturbations for p large. The condition that the
wavefunction vanish at r = 0 can be replaced by the
same condition at —oo with an exponentially small
error; the eigenvalues are then®

(reya)® = $(0° + Do 1 + o + 13907
~ 2010 + Pllo[1 + Lol(n + B)
+ o PP0 + n) + 451+ 007D, (77)
where n is the quantum number indexing the levels.
Insertion of (75) into (77) followed by inversion of the

resulting series to obtain p = «, as a function of y
yields
() = Gyeriroy)t +
~ B TE(ry)
— 3@ + 0 + D)
+ 1340 + D)™
~ 3@ () 4 0[], (78)
%7 The resuits of applying Rayleigh-Schrédinger perturbation
theory to the anharmonic oscillator are given by L. D. Landau and
E. M. Lifchitz, Quantum Mechanics—Non Relativistic Theory

(Addison-Wesley Publishing Company, Inc., Reading. Mass., 1958),
p- 136.

(75)

o*(n +3)
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where

T = 6mVyrah 2 (79)
We again replace (60) by (64) and evaluate (58) by
steepest descent. The saddle point y,, which is the
root of f(y) = 0, occurs at

rave = (7 (ﬂ;o) + At

2l

+ RO+ 4 HrA (T

— $53Hn + P (ﬂaro)“’*

+ st (2] of (7] o0

The saddle-point calculation yields

A, —4(5)57%/13( z) h,exp(f),  (81)
where
n=1 10t + -3 ’”‘o)*’"
+|:("+2) 280 }r (ﬂ,
- st () o[ () ] e
and
Jo= “”{%ﬁ(?}ro )+ (n + Dot
- ’12‘7%(13—0) S+ 7’;0) !

—L -2
10+ 9 () e ()

(")

The present methods can be used for any potential
which is more repulsive than r—2 as r — 0. Clearly all
such potentials will exhibit the exponential suppression
of the exchange second virial coefficient at high
temperatures, which has been computed explicitly
here for hard spheres and for the Lennard-Jones
potential.

(83)

VI. WIGNER-KIRKWOOD EXPANSION

For potentials with strongly repulsive cores but no
sharp corners, such as the Lennard-Jones 6-12, the
Wigner-Kirkwood expansion®° in powers of A2
gives a suitable high-temperature expansion of the

28 E. P. Wigner, Phys. Rev. 40, 749 (1932).

29 J. G. Kirkwood, Phys. Rev. 44, 31 (1933).

3¢ M. L. Goldberger and E. N. Adams, J. Chem. Phys. 20, 240
(1952); A. J. F. Siegert, J. Chem. Phys. 20, 572 (1952); F. Oppen-
heim and J. Ross, Phys. Rev. 107, 28 (1957); A. M. Yaglom, Teoriya
Veroyatnostei i ee Primeniya 1, 161 (1956); H. E. DeWitt, Ref. 1.
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direct second virial coefficient. The Laplace-transform
methods of the present article provide a considerably
less laborious means of computing the terms of this
expansion. We first derive this expansion in its most
general form, beginning with a Hamiltonian

= —(B2M)V? + V(v), (84)
where V2 is the Laplacian in # dimensions and r is an
n-dimensional vector. By setting n = 3N, we obtain
the Hamiltonian for N identical-mass particles in
three dimensions. We follow the original method of
Kirkwood?® to the extent that we use the coordinate-
space representatives of momentum eigenfunctions
for evaluating the partition function

Tre 7 = 2 f d"p (p| e |p),

W (85)

where

@ Iy = 5 [t o a6)

Here Q is the coordinate-space volume. We now
employ the Laplace transform and introduce

@I (H + W) [py = f "7 ] P |y

ﬁéfd"l'e—ih_lp.r(f]-l- W)—leih_ln-r-

(87)
Now let (where p is a ¢ number)
A=p QM)+ V() + W,
B = [RCM)]V? + p*{(2M), (88)

so that H + W = A — B. Here p¥/(2M) has been
added and subtracted to improve convergence by
making (p| B |p) =0. We can now use the formal
operator expansion
(H+ W)yl=41+ 47B4

+ A7'BA7BA  + -+ - (89)
to obtain the expansion of (p| (H + W)™ |p) in
powers of /. The labor of working out the terms can
be further reduced by exploiting the hermiticity of
ihV to do half of the differentiations to the left; thus
we obtain

P®IH+ W) p
1
- = -1 L)
Qfd"r{A + [/(2M))
x A M Hp - VA — (VA7)
t [RIQMFA(VA™ — 2M~p - VA Tp- VAT

—_ 2M—1(V A-—lp .V A—1)2]
+ [BEMPRATM (VAP - VA

+ p-VA VA 4 2Mp VAP VAP VAT

— (VAIVPA™ — 2M*'VAp - VA p - VAT
+ terms odd in /p + O(F%)}. (90)
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Here the terms odd in /p have been omitted since
they drop out anyhow after performing the momentum
integration. We now carry out the differentiations,
inverse-Laplace-transform back, insert the result in
(85), and perform the momentum integrations to
obtain, where U = gV

Tr e"ﬁH = (2‘”M /e
ph* )

x f d"re‘U"’{l - é(%)wmz

71\2M
+ 70(V*U)* + 36(VU) - (VVU) - (VU)

~ 28 ; (2*U/ ax,.ax,)z}
1 (BB 61
+ 5i{a) | 1Y
— 120(VU) - (VVU) - (VVU) - (VU)
— VUXVEUY: — T2(VVEUY?
+ (VU (VU) - (VVU) - (VU)
+ 3VUYVEU + 12(VUP(VU) - (VV2U)
+ 24(VEUXVU) - (VVU) - (VU)
— 96(VU) - (VVU) - (VVAU)
+ 96(VEUY(VU) - (VV2U)
— 12(VU)* 3 (2°U oxdx )}
— 114 3 (3°U/[0x,0x ;0x; )

1,5,k
— 96 3 (9U[x)(0U2x,Y0U ox,)
X (aab/ax,.ax,axk)
+ 480 3 (3Uax,)(3°U [9x ,0x,)

4.k

+ l("_zﬂ)z[ —}(VU) — 5AVUPVAU

% (3°U[0x9x 9x;) + O(h”)]}. ©1)

This expression can be further simplified by partial
integration to obtain finally

_ 2w M\M*
e = ()
Wiy
~U(r) 1 ——(=£ U 2
xfd"re { 12(2M)(V j
1 h2ﬁ 2
+ 2-6!(2M)

x [(VU)! — 8(VURV2U + 12(V2U)?]

1 (KBY 6 _ 40V
+ 9!(2M) BVU) — 40(VU)

-(VVU) - (VVU) - (VU)
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+ 12(VUA(VEU)? — 216(VVEU)?
— 50(VU)'VEU

+ 40(V2UYVU) - (VVU) - (VU)
+ 216(VU) - (VVU) - (VV2U)

+ 264(VEU)(VU) - (VV2U)] + O(}i“)}. (92)
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previously,'1:3 but to the author’s knowledge, the A®
term has not appeared previously in the literature.

The application of (92) to the computation of the
direct second virial coefficient for the Lennard-Jones
potential is straightforward and has been given
previously®® through the /* term. Using the notation
of Eq. (72), the result is

Buwa = 47V (Y, 09
The terms of order #%2 and A* have been obtained where
by = — éop(%:r; D (BV A,
® L
by = — 50(3024n2 + 47;:;12 (;: 47n6!7)F(%n + %) (BVy) e
by = 20(53568n3 + 303216n21-1i—42§818;/§:!+ 180615)I'(3n + 1) (BV Vs 94)
ACKNOWLEDGMENT is an upper bound independent of both W and 4.

The author would like to thank Professor Fritz
Oberhettinger for several helpful conversations.

APPENDIX A: PROOF OF THEOREM 1

Theorem 1 is a consequence of the following
lemma.

Lemma 1: Let g(W) and h(W) be the Laplace
transforms of functions g(8) and A(f) which are
integrable on (O, R) for any R < oo and for which
there exist constants 4, W, such that |g(f)| < 4efo
and [h(f)| < AefPo for B > 0. Assume further that
h(B) >0 for B> 0, and that eh(W)— o as
W— oo for each d > 0. Then lim g(8)/a(f) =0
implies lim g(W)/h(W) = 0. p—o*

W->0

Proof of Lemma 1: Decompose g(W) as g(W) =
&i(W; 0) + g,(W; ), where

]
g(W; 6) = f V(B dp

and
230 = [ "oy ap.
Now lim g(8)/h(f) =0 implies that for each
ot

€ > 0 there exists a § > 0 such that [g(8)| < ten(h)
for 0 < B < 4. Then |g,(W; 8)| < 3eh(W). Further-
more, for W > W, > W, and 8§ <48, we have
18a(W; O)| < ce™®W, where ¢ = AeWo[(W, — W)

Then, for each 6 > 0, eA(W)— 0 as W — o
implies the existence of a W, such that for W > W,,
ce~W < 1eh(W). Hence for each € > 0 we can make
|g(W)| < eh(W) by taking W sufficiently large, and
the result follows. '

Proof of Theorem 1: Define
N
gn(B) = f(6) — go a,Pu(B).

Theorem 1 then follows from letting g = gy and
h = @y in Lemma 1.

APPENDIX B: PROOF OF THEOREM 3
Theorem 3 is a consequence of the following lemma,

Lemma 2: Let g(W) be the Laplace transform of a
function g(B). Assume that g(W) is analytic except
on the real axis for W < W,, and that g(W)* =

&(W*). Assume further that for some « > 0 lim
|W]—c0
Wetig(W) = 0 holds uniformly in arg Wfor |W|— «

in the right half-plane and uniformly in Re W for
Im W — oo in the left half-plane. Then

lim f~<g(f) = .
B—0

31 After the present manuscript had been submitted, the author
became aware of a paper of Kihara, Midzuno, and Shizume
[J. Phys. Soc. Japan 10, 249 (1955))}, in which the Wigner-Kirkwood
expansion was carried to order /i® for the special case of the direct
second virial coefficient. The terms were evaluated for the Lennard—
Jones potential; the present result agrees with theirs. The author is
indebted to Dr. S. Y. Larsen and Dr. M. E. Boyd for calling his
attention to their work.

3], De Boer and A. Michels, Physica 5, 945 (1938),
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Proof of Lemma 2: Consider the Laplace inversion
integral

Witiéao
g(B) = — W W) dW,

Wi—ico

(BD)

Introduce polar coordinates r, 0, so that W = re®,
and deform the contour in (B1) to the curve ¢ defined
by

r = [(x + 1)/1(6/sin 6). (B2)

Note that the phase of # W1 is zero on c. Writing
dW = dU + idV and using g(W)* = gW?*), we
then have

1 ;o
o) = 5= [emaom av (B3)
271’ €
Now for each € > 0, there exists an L such that for
{W]> L in the right half-plane and for |Im W|> L
in the left half-plane

W)l < ew—1. (B4)

Hence for 8 < (« + 1)/L, (B4) holds on the entire
contour ¢, and

21 < 5= [y =

Hence lim ﬂ“'g(ﬁ) =0.
0
Proof of Theorem 3: Define

=f(W)

Theorem 3 now follows from applying lemma 2 with
g = gy and a = ay. Cleatly the present method of
proof can be extended to a more general set of gauge
functions @,(W)if the contour in (B1) can be deformed
into a contour on which the phase of e @ (W) is
stationary and on which the asymptotic expansion
for large |W| is uniformly valid.

N
(W) — X a, W

APPENDIX C: PHASE SHIFT FORMULATION

In this Appendix we show how the present formula-
tion can be transformed into the phase-shift formula-
tion given by Gropper and by Beth and Uhlenbeck .
For free particles, where G is replaced by G,, it is
easily shown that Bl =0 and B, = F2°F
J3NQ2S + 1)L In the interacting case, then, Egs.
(3) and (4) imply that

B direct = _2%N Z3A+ » (C].)

By = Bl F 2INAQS + 1AL, (€2)
where

8. =[Gr, £x: p . (C3)
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If we use the inversion integral (56) and the expansion
(11) to express G(r, &r; f) and perform the integra-
tion over r in (C3), we obtain

=3 (£1)'Q! + DB, (CH
1=0
where
1 Yotico 12 2
B, =—=
! 471'2i Yot oxP ( 277’)

X [f g P, r; p)ar® dr]y dy. (C5)

In (C5), y, is sufficiently large for the contour to lie to
the right of any bound-state poles. We now shift the
contour to lie e to the right of the imaginary axis,
picking up the residues at the bound-state poles with
the aid of (17). We put y = ¢ + ik above the real
axis and y = € — ik below the real axis to get

=S [*;’ (')} L "exp (- gf)mz(k)dk,

(C6)
where

ok) = ik hm [fw W, r; e + ik)r* dr

-—f g9, r; e — ik)rt dr]. (CDH

We can evaluate the integrals in (C7) by using the
radial equation (£ — y*)u = 0. Denote the solutions
by u,(r;y), where u, satisfies the inner boundary
condition and u, satisfies the outer boundary condi-
tion. By integrating both sides of the relation

uy(r; ¥ )us(r; y) — uglr; Y)Euy(r; ')
= [p? — (P lug(r; y)us(r; »),

one obtains the indefinite integral
uy(rs Yus(r; y)r* dr
r* duy(r; y') ’ auz(r;y)]
ulr;y — u (r; py =240,
= o [ i) P — ;) 225

By letting ' — v, and discarding an infinite integra-
tion constant, it follows that

f uy(r; Yug(r; ) dr

Pl Qs y) 9l y) Quy(r; y)
B 27}[212(7‘, 7 oroy oy or
We normalize #; by imposing an inner boundary

condition which is independent of y. The right-hand
side of (C8) then vanishes at the lower limit. We

]. (C8)
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normalize #, by the demand that

Uy ;:: r_‘}K, Ayr). (C9)

For large r,
i —> A a0m) + BOIKa(n. (€10

Different choices of the y-independent inner normaliza-
tion for », multiply 4 and B by a constant which is
independent of y. Evaluating the Wronskian for large r,

Aluy, ug) = —r2A(y). (C11)
Using (15), (C8), (C9), (C10), and (C11), we obtain

f g r ) dr = =20,
0 2y A(y)
which is obviously unchanged by different choices of
the y-independent inner normalization. By using the
asymptotic forms of the modified Bessel functions,
we can replace (C10) by

(C12)

Uy —> Q) A )
+ [B(y) — (=A™}, (C13)

The phase shift 7, is defined by the statement that
for the wave problem in which y = ik, the asymp-
totic form of u, is

o sin (kr — $lm +n)

T © r

1 (C14)

If we compare (C13) for the cases y = € & ik with
(C14), we find that

Afe + ik)/Ae — ik) = (—=1)en  (C15)

Taking the logarithmic derivative of (C15) and using
(C7) and (C12) show that

¢i(k) = dn/dk.

We remark at this point that (C16) can also be
established by considering the radial equation on
(O, R) instead of (O, ), where R is much larger
than the range of the potential and where kR > I;
for finite R, the continuum is replaced by a discrete
set of levels and the representation (17) of g'¥ can be
used to evaluate (C7).

Inserting (C16) into (C6), integrating by parts, and
using A2y2(l)[2m = —fe,(]), where e,(I) is the bound-

(C16)
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state energy, yield
B, = 3 exp [—fe ()]
" 27,2

+ (1 m?) ﬁ " exp (— %—f—)m(k)k dk, (C17)

which is the result of the usual phase-shift formulation.

APPENDIX D: JUSTIFICATION OF THE
WATSON TRANSFORMATION

The differential equation (£ — y%u = 0 is analytic
in » and the boundary conditions on u; and u, are »
independent®’; hence u, and u, are analytic functions
of ». Hence g% is analytic in » except where bound
states occur. Bound states can occur only if (£ —
yHu = 0 has a turning point; hence the only singu-
larities of g~} for real y are bound-state poles in the
imaginary axis.

Application of the WKB method for radial equa-
tions® to (£ — y*u =0 [with £ defined by (14)]
yields for the sohitions #, and u, satisfying, respec-
tively, the inner- and outer-boundary conditions

up o 7GR + UG + 7136,
uy 22 10 + UG + e,
where » =/ + 4 and

(D1)

f) =yr ——J‘m{(v/r)2 + U@ + y2]’} — y}dr. (D2)

In the case U(r) = 0, (D1) gives the first term of the
Debye expansions. The approximation (D1) is valid
if

éa; [0 + 61|« 1yt + UG + P (D3)

The use of (D1) in (15) yields

e y)

& 3(r, ) O + UM + 1
f(r)—f(r'); r < rl

X (01 + V) + 1 oo, S
| (D4)

Clearly (D3) holds for large y if » is not pure imagi-
nary; the estimate (D4) then justifies the replacement
of the contour C,-+ C; by C, in (54).

3131}(’). M. Morse and H. Feshbach, Ref. 8, pp. 1092-1105, especially
p. 1.
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The analytic S-matrix framework is further developed. First some results of earlier works are collected
and the physical-region analyticity properties recently derived from macroscopic causality conditions
are described. These entail that scattering functions are analytic at physical points except on positive-«
Landau surfaces, and that there they are ie limits of analytic functions from certain well-defined direc-
tions, except possibly at certain points where four or more positive-o surfaces intersect. A general ic rule
that also covers these exceptional points is then stated. It is then shown that the scattering function
defined by analytic continuation is either symmetric or antisymmetric under interchange of variables
describing identical particles and that the sign induced by the interchange is independent of the particular
scattering function in which the variables appear. The physical-region analyticity properties of bubble-
diagram functions are then derived from the general ie rule. These functions are products of scattering
functions and conjugate scattering functions integrated over physical internal-particle variables, as in the
terms of unitarity equations. They are shown to be analytic in the physical region except on Landau
surfaces and, more specifically, except on those Landau surfaces that correspond to Landau diagrams that
are supported by the bubble diagram in question, with the further restriction that the Landau a’s must
be positive or negative for lines lying within positive or negative bubbles, respectively. Also, the basic
rule for continuation around these singularities is derived. A new general derivation of the pole-
factorization theorem is given, which is based on slightly weaker assumptions than earlier proofs. Particu-
lar attention is paid to the over-all sign. A general derivation of the crossing and Hermitian analyticity
properties of scattering functions is then given. On the basis of the deduced general rules for constructing
the paths of continuation that connect the crossed and Hermitian conjugate points, the various related
points are found to be boundary values of a single physical sheet. In particular, a certain sequence of
continuations is shown to take one back to the original point. From this fact it follows that abnormal
statistics are incompatible with simultaneous unitarity in both the direct and crossed channels. The proof
given here does not depend on the notion of interchange of variables other than those of identical
particles. Earlier proofs depended on the unphysical notion of interchange of variables representing
conjugate particles. Finally it is shown that the analytically continued A functions with normal-ordered
variables are precisely the scattering functions: no extra signs are needed or permitted. Aside from the
general / rule, the analyticity assumptions are these: (1) The discontinuity around a singularity of a
bubble diagram B has no residue at a physical-particle mass value (in an appropriate variable) unless
the singularity corresponds to a diagram that is supported by B and has the single-particle-exchange
form that corresponds to a pole at that mass value. (2) The residue just described has the pole-factoriza-
tion property. (3) Confluences of infinite numbers of singularity surfaces do not invalidate the results
established by assuming that this number is locally finite. Assumption (1) entails that all relevant
singularities of scattering functions lie on Landau surfaces. That is the basic assumption.

OCTOBER 1968

1. INTRODUCTION

An earlier S-matrix proof of the normal connection
between spin and statistics given by this author!
depended on an assumption that self-conjugate
combinations of particle and antiparticle amplitudes
were in principle observable. The assumption is
objectionable because it has no experimental basis in
the case of charged particle and in fact conflicts
with a conjectured superselection rule.?

In that original paper, the beginning of a second
proof, not depending on this special assumption, was
also given.® This alternative proof depended on an
apparent conflict between abnormal statistics and the

1 H. P. Stapp, Phys. Rev. 125, 2139 (1962).

2 G. C. Wick, A. 8. Wightman, and E. Wigner, Phys. Rev. 88,
101 (1952).

3 Reference 1, Appendix I. There, crossing was assumed to hold
without any extra phase factors, but the no-scattering parts were
allowed to be different from unity.

crossing and Hermitian analyticity properties of
scattering functions. The crossing property of (multi-
particle) scattering functions is the property whereby
the scattering function describing one reaction is
connected by analytic continuation to the scattering
function describing certain other reactions, called
crossed reactions. The Hermitian analyticity property
is the property whereby the scattering function
representing a given process is analytically connected
to the complex conjugate of the scattering function for
the transposed process at certain real boundary points.

This second argument was not a full proof. In the
first place, the statistics involved was the sign change
under interchange of variables describing relative
antiparticles, whereas the spin-statistics connection
involves the sign change under interchange of two
variables describing particles of the same type (iden-
tical particles). And in the second place, the required
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properties of crossing and Hermitian analyticity were
not derived, but simply assumed.

The first defect was partially remedied in a later
paper,* where it was shown that a certain assumption
on the phase factors occurring in the cluster de-
composition expansion implied that the sign change
under interchange of identical-particle variables was
the same as the sign change under the interchange of
conjugate-particle variables. This assumption on the
phases was that they be such that the disconnected
contributions to a unitarity equation be equivalent to
a product of the unitarity equations in the various
disconnected sectors considered by themselves. This
assumption, although reasonable, is replaced in the
present work by direct physical requirements.

The main object, however, of the present paper is to
give proofs of the crossing and Hermitian analyticity
properties. The work is a development of a line of
approach initiated by Gunson® and explored by
Olive® 7 and is based on an exploitation of the pole-
factorization property of scattering functions. This is
the property whereby the residues of poles of scattering
functions at certain points in the physical regions of
multiparticle processes are given essentially as the
products of scattering functions for certain other
reactions involving fewer particles. More specifically,
the work is an elaboration of an unpublished work of
this author® in which the procedure, later adopted
also by others,”? was developed whereby the paths of
continuation to crossed (or Hermitian conjugate)
points are defined by distorting certain paths, originally
lying in the physical region of the larger process and
running between different parts of the pole manifold
S, = u2, into paths lying completely within the pole
manifold S, = p2. These latter paths specify the
mass-shell continuations between the relevant points.
The present work goes beyond earlier attempts”? to
exploit this idea in that it covers all possible reactions
and all Landau singularities. The work of Ref. 7
treated only the simplest reactions and ignored all

L H. P. Stapp, “The Decomposition of the § Matrix and the
Connection Between Spin and Statistics,” Lawrence Radiation
Laboratory Report UCRL-10289, 1962 (unpublished).

¢ J. Gunson, Birmingham Preprint (1962) and J. Math. Phys. 6,
827 (1965).

*D. Olive, “Towards an Axiomation of S Matrix Theory”
(July 1963) (preliminary version of Ref. 7.).

? D. Olive, Phys. Rev. 135, B745 (1964).

8 H. P. Stapp, “Seminars in Problems in S-Matrix Theory,”
August 1963 (privately circulated). That Gunson’s method might be
used to justify an effective continuation in mass, which is the central
idea of both this reference and of the present paper, was suggested
carlier in the Proceedings of the 1963 Midwest Conference on
Theoretical Physics (Notre Dame, May-June 1963). The main
Qiﬂiculty in achieving this is to take all possible Landau singularities
mto account.

? J. B. Boyling, Nuovo Cimento 33, 1356 (1964).
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but the trivial normal-threshold singularities, and the
work of Ref. 9 referred to a simple reaction with
special mass ratios.

Having established the required crossing and
Hermitian analyticity properties, we give a new
version of the remainder of the proof of the normal
connection between spin and statistics. This new
version is more simple and direct than the one given
earlier.®% It avoids completely the introduction of the
notion of a phase change induced by an interchange of
conjugate variables (variables that refer to relative
antiparticles). The need to introduce this notion was a
disagreeable feature of the earlier proofs, for this
phase change, unlike the sign change under the
interchange of like variables (variables referring to
identical particles), apparently has no direct physical
significance. And in order to deal with the interchange
of unlike variables, certain stipulations had to be
introduced relating the phases in the cluster de-
composition equation to special orders of variables.
The present proof circumvents these difficulties.

This new proof of spin and statistics, which is given
in Sec. 7, is largely independent of the details of the
work preceding it. That section is therefore designed
to be largely self-contained. It depends, in fact, only
on a very gross feature of the proof of the pole-
factorization theorem and on a rather trivial-sounding
property of the paths connecting crossed reactions and
Hermitian conjugate points.

This property is that the relationship of Hermitian
conjugateness is maintained when the two related
functions are continued to their respective crossed-
reaction points; the abnormal connection between
spin and statistics would demand that these two
continuations lead to functions differing by a sign,
which is just the trouble noted in Ref. 3. The proving
of this analyticity property is the main object of the
earlier sections.

The proof of spin and statistics given in the present
paper resembles one recently proposed by Lu and
Olive'®* in that both hinge on the analyticity
property just mentioned. However, this property was
simply assumed by Lu and Olive. Also, their proof,
which seems more complicated than the present one,
makes use of the notion of interchange of unlike
variables and is based, like the one in Refs. 3 and 4,
on a special stipulation relating the phases in the
Cluster-decomposition equation to particular orders
of variables.

1 E. Y. C. Lu and D. L. Olive, Nuovo Cimento 45A, 205 (1966).

“. David Olive (private communication). The proof of spin and
statistics given in Sec. 7 was constructed upon receiving this com-

munication, in which Olive stated that he and Lu had obtained a
proof based on his version of the crossing argument.
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Because the present paper is long and much of it is
devoted to establishing rather fine points, it will be
useful to give an outline of the contents, with emphasis
on the nature of the main problems being tackled.

Section 2 contains a resume of results needed from
earlier works. The first eleven subsections give the
basic formulas of the M-function formalism developed
in Refs. 1 and 12. A principal reason for developing
that formalism was to provide a framework for a
satisfactory proof of the normal connection between
spin and statistics. That is, in order to obtain this
result as a staternent with physical relevance, it seems
necessary, in the present uncertain situation, to clear
away abstract formal assumptions and to base the
framework directly on assumed fundamental physical
relationships. Then the conclusions cannot be altered
by any adjustment of formal connections in a way that
stifl preserves these basic physical connections.

A statement of the cluster-decomposition principle
is given in Sec. 2L, and in Sec. 2M a ‘‘scattering
function” is defined to be a connected part of an M
function divided by the conservation 4 function.

In Secs. 2N-2Q a description is given of the physical-

region analyticity properties of scattering functions .

that have recently been derived within the S-matrix
framework from a macroscopic causality condition.!?
What has been derived is the location of all possible
physical-region singularities, and the rules for con-
tinuing around these singularities in such a way as to
arrive at the physical function lying on the other side
of the singularity manifold. The possible physical
region singularities are, in fact, confined to positive-«
Landau surfaces, and the paths of continuation about
these singularities (the /e rule) can be explicitly con-
structed from a knowledge of the corresponding
Landau diagram.

The final six subsections of Sec. 2 are devoted to
proving that the scattering functions must be either
symmetric or antisymmetric under the interchange of
like variables (variables representing identical parti-
cles). Moreover, the sign (change) under interchange
of a particular type of variable is a universal quantity
that is independent both of the particular scattering
function in which the variables appear and of the
particular location of the variables among the argu-
ments of these functions.

The fact that parastatistics is precluded here is a
direct consequence of our basic assumption® that the

12 Y, P. Stapp, “The Analytic S-Matrix Framework,” in “The
Trieste Lectures,” High Energy Physics and Elementary Particles
(IAEA, Vienna, 1965).

12 C, Chandler and H. P. Stapp, URCL-17734.Certain infinitely
differential singularities, not excluded by this work, are ruled out
by an extension due to Iagolnitzer and Stapp. (in preparation).
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observables of the theory are squares of amplitudes.
This is not true in parastatistics models. Thus the
work of these subsections is not to be construed as a
general disproof of parastatistics but rather as a proof
that, within the framework adopted, in which obser-
vables are squares of amplitudes, the continuation of
the scattering function through a region near physical
points from an original region of definition to some
region where like variables are interchanged must
give back the original function, apart from a sign
that depends only on the type of particle involved.

Having established that interchange of like variables
leads to a sign (change) o, that depends only on the
type of particle p, one may then ask what the value of
this sign is. The normal connection between spin and
statistics is the relationship

o, = (=1,

where j, is the spin of particle p.

Section 3 is devoted to the proof of some physical-
region analyticity properties of functions represented
by bubble diagrams. These functions are functions
of the kind occurring in unitarity equations and are
formed by integrating products of scattering functions
and their conjugates over the physical phase space
associated with certain internal particles. The singu-
larities of any such function are shown to be confined
to a certain corresponding subclass of Landau sur-
faces. The singular parts of the surfaces are not always
the positive-a parts, however. The rules that determine
which parts of the Landau surfaces are singular and
the ie rules for continuing around these surfaces are
derived.

The fact that the singularities of these functions are
confined to Landau surfaces is a result somewhat
similar to one obtained by Polkinghorne.** The result
of Polkinghorne does not refer specifically to the
physical region, however, and the possibility of non-
Landau (i.e., second-type) singularities arises. The ie
rules derived here for detouring around physical-region
singularities generalize results about physical-region
singularities recently obtained by Landshoff and
Olive.'?

Section 4 is devoted to a general proof of the pole-
factorization theorem. The original S-matrix proof
by Olive” was for a simple case and was based on an
assumption (called a theorem) that has recently been
shown by Branson'® to be not valid in general.

143 C. Polkinghorne, Nuovo Cimento 25, 901 (1962),

15 p, ¥, Landshoff and D. L Olive, . Math. Phys. 7, 1464
(1966), See note Ref. 12.

16 David Branson, Nuovo Cimento 444, 1081 (1966).
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Branson’s counterexample also contradicts an assump-
tion made in an earlier proof by this author.?” That
assumption was that almost all singularities lying on
the “pole manifolds” S, = u? are associated with
“pole-type” (i.e., one-particle-exchange-type) Landau
diagrams, these being Landau diagrams that can be
reduced by contraction to connected Landau dia-
grams having just two vertices and just a single
internal line connecting these two vertices. Branson
has shown that other types of singular Landau
surfaces can lie at §, = p%. Our earlier assumption
is therefore weakened to the assertion that almost all
pole (or worse) singularities lying on the manifold
S, = u2 are associated with pole-type Landau
diagrams. (That the assumption in Ref. 17 should be
weakened in this way was already suggested there.)

This “pole assumption” is a fundamental assump-
tion in the present work. It is believed that it can be
verified by an examination of the nature of the possible
Landau singularities lying at S, = u2, but this
verification is not attempted here.

The derivation of the pole-factorization theorem
given in Sec. 4 is different from the one given in Ref.
17. The form given here is useful because essentially
the same technique can be used to derive the general
normal-threshold discontinuity equation, as will be
discussed in a later paper. Also, the present derivation
is given in greater detail than the earlier one and
covers particles with spin (a trivial extension in the
M-function formalism). More importantly, the phase
factors occurring in the cluster decomposition are
taken into account. These will play an important role
in the discussion of spin and statistics.

Section 5 contains a proof of the Hermitian analyt-
icity property. The !‘pole assumption” is again
fundamental, and now it is extended to points lying
outside the physical region. The essential idea of the
proof is to consider a larger process from which the
scattering function of interest can be extracted as a
factor in the residue of a product of poles.>~® The
unitarity equation for the larger process at a point
corresponding to null energy-momentum vectors
for the reaction of interest is effectively continued to
the pole position by exploiting the fact that most
contributions to the larger process do not contribute
to the residue.

The arguments in Sec. 5 deal individually with
individual Landau surfaces. There is a tacit assump-
tion that results that hold for the Landau surfaces
individually will hold for them collectively. In par-

17H. P. Stapp, ‘“Antiparticles in S-Matrix Theory,” in “The
Trieste Lectures,” High Energy Physics and Elementary Particles
IAEA, Vienna, 1965).
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ticular, it is assumed that no natural boundaries
formed from confluences of infinite numbers of
Landau surfaces invalidate results that are valid when
the surfaces are considered individually.

In Sec. 6 the reader is first referred to the proof of
crossing given in Ref. 17. That proof is then extended
in such a way as to obtain a compatibility condition
on the paths of continuation connecting crossed and
Hermitian conjugate points. This compatibility con-
dition, which says essentially that the Hermitian
conjugate points for crossed reactions are connected
by the complex conjugate of the crossing path, plays
a key role in the proof of spin and statistics. It is also
shown that this compatibility requirement carries
over to the case in which the paths of continuation
jump across various cuts, rather than detouring around
them, provided the pole-factorization property carries
over to the relevant discontinuity functions, as it
would do if these functions were given by a Cutkosky
rule.

The proof of the normal connection between spin
and statistics is given in Sec. 7. It is quite simple. It is
noted that the residue functions in the pole-factoriza-
tion property were obtained from a corresponding
pole term in the unitarity equation for the process
in which the pole appears and that the phase factor
in the residue formula is, consequently, precisely the
phase factor of this contribution to unitarity. In
special cases, this contribution to unitarity is just
one of the absolute-value - squared contributions to a
“forward scattering” process, apart from some signs
coming from interchanges of certain identical parti-~
cles. Thus the phase factors in these pole contributions
are determined by the statistics of certain particles.
The residue functions associated with crossed reac-
tions, which are connected by analytic continuation,
are compared and shown to have a sign incompat-
ibility in case any scattered particle has abnormal
statistics.

In Sec. 8 the phase factor in the crossing relation is
shown to be unity for the functions M,(K): these
particular functions, without any added phase factors,
give, when continued along the paths of continuation
connecting crossed regions, the scattering functions
for the various crossed process.

To obtain this result, a special stipulation relating
phases in the decomposition equation to order of
variables is invoked. This stipulation is, in effect,
used in the proof of spin and statistics given by Lu
and Olive. Since this stipulation is of a formal rather
than physical nature, it renders that proof, like the
proof of Ref. 4, not completely satisfactory from the
pure S-matrix viewpoint.
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This stipulation, although objectionable as an
element of a proof of spin and statistics, is quite
natural and is adopted in the final specification of the
formalism. It eliminates an indeterminate factor in
the crossing relations and also places conditions on the
phases induced by interchange of variables associated
with different particles. In particular, it implies, as is
shown in Sec. 8, that the interchange of adjacent
conjugate variables induces the same sign change as
the interchange of the corresponding like variables.

Note added in proof: It has now been proven in an
excellent work by Froissart and Taylor (Princeton
University Preprint) that this special stipulation can be
derived from physical requirements. Also, some
results similar to the structure theorems of Sec. 3 have
now been derived by Landshoff, Olive, and Polking-
horne (Cambridge University Preprint).

2. GENERAL FORMALISM

Certain basic definitions and fundamental results
from earlier works will be summarized in this section.

A. The S Functions

Scattering processes are described by functions
S(K’; K"), where K’ and K" are sets of variables of the
form

K’ = {p;, m}, 1}
and

K" = {pl, mi, 11},
describing the final and initial particles, respectively.
The index ¢, is a positive integer that specifies the type
of particle—electron, proton, positron, etc. The p;
is the physical energy-momentum vector of particle
and is constrained by the mass condition

=) — @ =pt)=p>0 Q1
The masses u; are assumed positive in this work.
The m, are positive and negative integers or half-
integers, called spin indices, ranging in unit steps
from j(z,) = j, to —ji:

j@y=jizm 2 ~ji. (2.2)
B. Unitarity
The S functions satisfy the unitarity equations
> S(K'; K)S*(K"; K) = &(K'; K") - (2.3)
and *
2.9

3 S(K; K)S*(K; K') = 8(K'; K”),
K

where the asterisk denotes complex conjugate and the
summation over K means a summation over the
discrete spin and particle-type labels and an integra-
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tion with positive weight factor over the mass-shell
momentum-energy vectors p,. The weight factor
p(K) can be taken to be any positive function;
different definitions of p(K) lead to different S, but
observables, which involve always an integration
over p,, are independent of p(K). The  function is
defined by the properties

> 8K’; K)S(K”; K) = 8(K'; K”)
* = §(K"; K')
= $*(K"; K)
=0 for K’ K. (2.5)
C. M Functions -
Covariance properties are most conveniently ex-
pressed in terms of functions
M(K'; K") = L(V)S(K'; K)L(V"),
L) = 11 L(v).

The L,(v,) is a matrix in the spin space of particle
that transforms spin functions from values coordinated
to a rest frame 2, of particle / to values coordinated
to the general coordinate frame X. For a particle of
spin 4,

Li(v) = L)

(2.6)
(2.7

where

= cosh = +
° 2 [v;
=@ +1+0-V2 +27F  (28)
where v, is the covariant velocity vector
p.
v, = ——— (2.9)
2 P
and
sinh «; = |v,]. (2.10)

The matrix Li(v,) for particles of spin j > } is obtained
by extracting, by means of Clebsch-Gordan coeffi-
cients, the spin-j part of a tensor product of 2; factors
L¥(v,). (See Eq. C14 of Ref. 12.)

The rule for contraction of the spin indices in Eq.
(2.6) is not always the matrix rule of contraction of
adjacent indices. The exact rule is given in Sec. 2H
below.

D. Covariance Property

From the assumed relativistic invariance of prob-

ability correlations one derives the covariance
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property

M(K'; K") = A7'M(AK’; AK"),  (2.11)

where

AK = {Ap,, m;, t;}. (2.12)

Here A is any element of the real, orthochronous,
proper, homogeneous Lorentz group Ll,and A isa
corresponding p,-independent spin-space transforma-
tion (see Ref. 12). To obtain Eq. (2.11), the weight
factor p(k) has been taken to have covariant form.
In particular, we take

4
s=xak=xT] [ ompamsrt -
K J(2m)

(2.13)

where X' is the sum over discrete indices.

E. Physical Irrelevancy of Order of Variables

The experimental result labeled by the set K =
{p;, m;, t;} is assumed to be completely specified by
the values of the arguments p;, m;, and ¢,. In partic-
ular, no additional information having to do with
the ordering of the variables is needed to determine
the experimental result. This assumption, in con-
junction with our quantum postulate of Ref. 17, means
that in the integration (2.13) one should include only
once the contribution from each value of X, considered
as an wnordered set of variables.

F. Fundamental Analyticity Property of M Functions

We introduce the following definitions.

Definition 2.1: A function F(p,;), defined only over
a subset W of the space of complex numbers p,, will
be said to be an analytic function of the p, at point
P of W if and only if, for every mapping p;(z,) from an
open set in a space of complex numbers z, into W, the
functions F’'(z;) = F(p,(z,)) are analytic functions of
the z;, in the usual sense, at all points {Z;} satisfying
{p:(2,)} = P for which the functions p,(z,) are analytic
at {,}.

Definition 2.2: A point K is a set {p,, 1;}. It is
distinguished from an argument K = {p,;, m;, t,}.

Definition 2.3: “F(K) is analytic at a point K will
mean that the functions F(K) corresponding to the
various values of the spin indices m, are all analytic
functions of the momentum-energy vectors p, at
point K of W, where W is the set of points K over
which F(K) is defined.

1553

A consequence'®2® of the covariance property
(2.11) is that, if M(K) is analytic at a point K, then
M(K) can be extended to a function that is analytic
at all points K of the set generated from K by applica-
tion of any element of the proper homogeneous
complex Lorentz group Ljr(C), which is the subgroup
of L(C) continuously connected to the identity. The
property of M(K) being analytic at a point K is
therefore Lorentz-invariant. This is not the case for the
S functions, since the functions L(¥) have singularities
whose positions depend on the coordinate frame, as is
seen from (2.8). The M functions have, in this sense,
simpler analyticity properties and are the more
convenient functions to use in a relativistic theory
based on analyticity.

G. Expressions for Observables

It is advantageous to express observables directly
in terms of M functions, rather than passing to S
functions, for in this way manifest covariance is
maintained. Let s, be the spacelike four-vector
satisfying

s;08,=—1 (2.14a)
and

i pi=0 (2.14b)

that specifies the axis relative to which the spin-
quantum number m; is measured. Equation (2.14b)
says that s; is purely spacelike in any rest frame of
particle i. With M functions one uses, in place of the
usual spin-projection operators P,(m;, s;), rather the
covariant-spin operators Z;(m;, —s,, v;). For spin-}
particles

P?ﬂ(mis —s;, 0;) = (3v; — m;sy) - 6:%

= (30} — m;sH)5%,,

(2.15)
where

G, = (1, —a)

(2.16)

and o is the usual Pauli spin-matrix vector. Notice
that the P,(m,, —s;, ;) in (2.15) reduces the usual
J = 3 projection operator in a rest frame of particle 7.
For j > } the P,(m;, —s,, v;) is obtained by extract-
ing, by means of Clebsch—Gordan coeflicients, the
spin-j part of the symmetrized tensor product of 2;
spin-4 spin operators P, (m,,, —s;, v;) subject to

Zm, =m;.

18 A proof of this fact is given in Ref. 8 and also in Ref. 19. A
proof explicitly making use of the definition (2.1) of analyticity is
given in Ref. 20.

12 Peter Minkowsky, David N. Williams, and Rudolf Seiler, in
Proceedings of the Symposium of the Lorentz Group, Seventh Annual
Summer Institute for Theoretical Physics, 1964 (University of
Colorado, Boulder, Colorado), Lemma A.

*0 H. P. Stapp, 1963 Madras Lectures on Analytic S-Matrix
Theory (Matscience, Madras, India, 1963), p. 72.
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The 2j upper-dotted (undotted) indices of the P## are
combined to give the (2j + 1)-valued upper-dotted
(undotted) index of P#. (More details are given in
Ref. 12)

Each spin index m; of M(K'; K") and M*(K’; K")
is defined to be lower-dotted or lower-undotted,
according to whether it is contracted in the calculation
of observables with an upper-dotted or upper-un-
dotted index of P##. Define, accordingly, a quantity 4;:

A= +1 (2.17a)
if the spin index m; of M(K’; K”) is undotted;

Ai=—1 (2.17b)
if the spin index m; of M(K’; K”) is dotted.

Define ¢; by

¢ = +1 (2.18a)
if particle / is final;

e = —1 (2.18b)

if particle i is initial.
Then m; is the projection of physical spin-angular
momentum on the “physical” spin direction

hys __
sPPYE = €455,

(2.19)

where s; is the “mathematical” spin vector s; appearing
in P,(m;, —s,, v,). The resuit (2.19) follows from the
covariance property (2.11) and the requirement that
spin-angular momentum plus orbital-angular momen-
tum be a conserved quantity (see Ref. 12).

In certain other formalisms, the initial and final
particles are associated with kets and bras, respectively,
and one always gets ¢;4; = +1. This special condition
does not occur naturally in the development of the M-
function formalism from basic physical postulates,
and it is advantageous not to introduce it. For in the
development of the theory, we shall be led to analyt-
ically continue our functions to regions where e;
is reversed. Under analytic continuation, the transfor-
mation property (2.11), hence the index type and
hence 4;, necessarily remains unaltered. To resolve
this conflict with a condition ¢4, = +1, new func-
tions would have to be introduced into the theory.
This unneccessarily complicates the formalism and
leads to possible phase ambiguities. It therefore is
better never to introduce the artificial condition
€;A, = +1. Then a single function will describe both
the direct and cross reactions. However, the connec-
tion between the physical spin vector sP"¥* and the
mathematical spin vector s; will be reversed under
continuation to crossed channels. This relationship
between the physical and mathematical spin vectors
is completely analogous to the one that will be
obtained for the momentum-energy vectors.
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H. Contraction Rule in the Definition of M(K’; k)

In the general development of the theory, the M
functions are originally defined by their connection to
observables through contractions with the covariant
spin operators, and Eq. (2.6) emerges as a conse-
quence. The index m; of S(X’; K”) turns out to be
contracted with the adjacent index of L(¥") or L(V")
if A,¢;, = +1, and the nonadjacent index otherwise.
The 2; can be specified at will by specifying the index
of P with which the index m; of M(K';K") is
contracted in the calculation of observables.

I. Unitarity for M Functions

One can specify the conventions for 4; so that the
€;4; for each individual particle, whether occurring
initially or finally, is a fixed sign depending only on
the particle type. (This specification relates initial
particle to final particle—not to final antiparticle; the
crossing concept is not involved.) If the 4, are specified
in this way, then unitarity takes the form

2 M(K'; K)G(V)M*(K"; K) — G(V)HK'; K") = 0,
K

(2.20)
R [ Gm =160t @21
and
G~1(”z‘) = [Li(vi)]_2' (2.22)
For spin-} particles,
Gv)=v,-6=1v]—v-0, (2.23)

while for spin j > } the G,(v;) is obtained by extracting
by means of Clebsch-Gordan coefficients the spin-j
part from a tensor product of 2j spin-} matrices (2.23).
Thus G,(v,) is of degree 2j; in the vectors v, and

Gi(—vi) = (— 1)%@1(”1)- (2.24)
J. Momentum-Energy Conservation

The M functions are nonzero only at points
satisfying
Zp; = Xp;. (2.25)

This conservation-law constraint is equivalent to the
statement of translational invariance if space and time
are introduced by Fourier transformation. In order
to give finite effects, an M function must have a
conservation-law 6 function (27)*(Zp; — Zp;) as a
factor.
K. M(K) Functions
We define M(K) (without the semicolon) by
M) = MK, — K" = M(K'; K"), (2.26)
where

(=K"= {—p;, m;, —1}. (2.27)
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For later convenience, the order of writing the
variables of (—K") is reversed relative to K. (See
Sec. 2R below and Sec. 8.) The momentum-energy
arguments of M(K) will be called the “mathematical”
momentum-energy vectors k,, where

k; = epis (2.28)

and ¢, is +1 or —1 according to whether particle i is
final or initial. In terms of the k; the momentum—
energy conservation law d function becomes

(2m)16%(Sk,) = 2% Sp, — Tp)).  (2.29)

L. Cluster Decomposition

M(K) is assumed to satisfy the cluster property*
M(K) = 3, M(K), (2.30a)
b4

where

M(K) = o, TT My(K,J). (2.30b)
Here K, is the sth subset of the pth partition of K.
The first (and only) subset of the first partition of K
is K itself,

Ky = K, (2.30¢)

and the function M,(K) is asserted to have no con-
servation-law & function aside from the over-all one
given by (2.29). The «, are phase factors depending
on the ordering of variables of K and of the K, but
not on the values of the momentum-energy argu-
ments k. The phase of M,(K) is defined by

(2.30d)

oy = 1.

The other phase factors «, must evidently depend on
the orders of the variables. They are asserted to be
restricted by the following two conditions.

E2: Let K,,, be an ordered set of variables consisting
of the variables of the sth subset of the pth partition
of the ordered set K. Let K be some ordered subset of
the variables of K. Suppose there are two partitions
p =aand p = b of K, and also two partitions p = a
and p = b of the set K, such that these two partitions
of K coincide with the corresponding partitions of
K over the set K and coincide with each other over
the remaining variables. That is, for some arrange-
ment of the indices s,

K,=K, for s<3, (2.30¢)
Rys = K,, for s<3s,, (2.30f)
K,,= K, for s—35 =5 —35 >0, (2.30g)

where §, is the number of terms of partition p of K.
Then the o, and &, in the cluster decompositions of
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K and K satisfy
(2.30h)

&a/&b = U'a/alw
E3: Let a and b denote two initial sets of particles
and let ¢ and d denote two final sets. Suppose each
of these four sets is divided into n subsets. Suppose
the first n — 1 subsets of set a are identical to the
first n — | subsets of set b and the first n — 1 subsets
of set ¢ are identical to the first n — 1 subsets of set d.
Let ac, ad, bc, and bd be values of p that denote the
partitions of the four sets of variables a + ¢, a + d,
b + ¢, and b + d, respectively, into n subsets, with
the first initial subset of a or b grouped with the first
final subset of ¢ or d, etc. Then the four «, satisfy

%ae __ Fpe

(2.301)

Oea  %pg

Postulates £2 and E3 are extensions of EJ of Ref.
12. Postulate E2 asserts that the phase difference
between two different cluster terms of a given scatter-
ing amplitude that differ only over a certain subset of
variables is independent of the remaining set of
variables R over which they are identical. These
phase differences are observable quantities, according
to Postulate B2 of Ref. 12. If they were not independ-
ent of R, then observable phenomena would depend
on effects associated with disconnected bubbles in a
manner contrary to the physical decomposition
principle; phenomena would depend on “unconnected”
phenomena, where “unconnected” means unconnec-
ted by energy~-momentum transfer.

Postulate E3 asserts that the ratio o/, : oty0/cte
takes the same value (unity) that it would take if just
the nth subsets alone were present. This ratio is an
observable quantity (provided the various M functions
are all nonzero—otherwise one of the phases can be
defined at will). This observable corresponds to an
interference effect in a transition from a combination
of a and b to a combination of ¢ and d. The postulate
asserts that this observable quantity is independent of
“unconnected” phenomena, as required by the
physical decomposition principle.

It is easy to verify that postulates E2 and E3 imply
that, in a unitarity equation, the sum of contributions
having a given connectedness structure (i.e., having a
given set of unintegrated conservation-law 4 functions)
combine to give a product of the connected parts of the
unitarity equations for the appropriate subsectors,
(The connected part of the unitarity equation is the
part having only one unintegrated conservation-law
0 function. The terminology comes from the dia-
grammatic representation discussed in Sec. 3.)
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M. Scattering Function M, (K)
The function
M(K)
(2m)*8%(Zk,)

is called a scattering function.

M(K) = (2.31)

N. Landau Diagrams
A Landau diagram D is constructed from a set

{L:i ’ Vn L ein}

consisting of several directed line segments L, and
two or more vertices V,,. Each ¥, contains endpoints
of three or more of the L;, but only one endpoint of
any single L;. The structure of D is defined by the
set of numbers «¢;, defined by

&.=+1 if LI<cV,
€ if Ly < V,,
€;» = 0 otherwise,

in=—1 (2.32)

where L} and L are the leading and trailing end-
points of L;, respectively. With each L, is associated a
type of particle #;, whose mass is u; . If particles of type
t; carry a; units of an additively conserved quantum
number a, then the conditions

Sae;, =0 (alln) (2.33)
i
are required of D,

The lines L, are characterized as being incoming,
outgoing, or internal according to the following rules:

L, isoutgoingif ¢, <0 forall n, (2.34a)
L, isincomingif €, >0 forall n, (2.34b)
L, is internal if neither of the above holds. (2.34c)

The incoming and outgoing lines are called external
lines.

A Landau diagram D(K)is a Landau diagram whose
incoming and outgoing lines can be placed in one-to-
one correspondences with the initial and final par-
ticles, respectively, associated with the set K =
(XK', —K"). A D,(K) is a connected Landau diagram
D(K).

O. Landau Surfaces A.[D]

Consider an association

L, (%,p) (2.35)

between lines of a Landau diagram D and pairs
consisting of a nonzero number «; and a (positive
energy) energy-momentum vector p,. The Landau
surface A[D] is the set consisting of the p; associated
with the external lines of all associations (2.35) satisfy-
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ing the conditions

Pl =43 (all)), (2.36a)
Spiim=0 (alln), (2.36b)

and ’
ga,-p,-nj, =0 (allf), (2.36¢)

where n;, is the number of times the directed Feynman
closed loop f passes along L, in the positive sense,
minus the number of times it passes along L, in the
negative sense.

Equations (2.36a) and (2.36b) are the mass-con-
straint and conservation-law equations, respectively,
while the equations (2.36c) are called the loop
equations,

The loop equations imply that the diagram D
can be converted into an energy—momentum space
diagram D of the same topological structure as D by
replacing each L; of D by the vector A; = a,;p;.

Definition 2.4: D is the energy-momentum diagram
associated with AG[D].

This equivalence between the existence of an
energy-momentum diagram D and the validity of the
Landau equations (2.36) is the basis of much that
follows. It should be thoroughly understood.

Definition 2.5: M+[D] is the part of M[D] that can

* be realized with all «; > 0.

Definition 2.6:

M(K) EDE{)J(»[D(K)], (2.37a)
MH(K) EDL&UQJWD(K)], (2.37b)
Moo(K) EDHz )MDG(K)L (2.37c)
H(K) EDE;JK)%WDG(K)L (2.37d)
MF(K) = closure of M{(K), (2.37¢)

F(K) = {K: K is a physical point}. (2.37f)

Definition 2.7: A physical point is a point K such
that M(K) represents a physical scattering process in
the manner described in Sec. 2G. Physical points are
necessarily real points.

The Landau surface A.[D] depends on the external
vectors p; only through the combinations

qn, = — Epiein = Zkz leinl’

exe exz:

(2.38)

where the sum runs only over the i corresponding to
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the external lines of D. The surface AM*[D] is, explic-
itly, the set of external p; consistent with the set of ¢,
lying on the surface defined by

W, — 0

- €nfymblis (239)

qn = =
mEn L ‘G)" p— mt

‘where the w, and w,, are energy-momentum vector
parameters that range over all real values such that
the vectors (@, — w,)¢;, l€,,| are positive timelike for
€;,€m # 0. The denominator function is the Lorentz
length

I(‘)n - wm! = [(wn - wm)(wn - wm)]ks (240)

which is necessarily positive, since o, — w,, is
timelike. The parameters w, can be interpreted as
vectors from an arbitrary origin to the vertices V,
of the energy-momentum diagram D associated
with MF[D].2

Since Eq. (2.39) is invariant under translations and
dilations, every point of M*[D] is achieved by a five-
fold continuum of sets {w,}. Sets {w/}, not exhibiting
these degeneracies, are therefore introduced:

Definition 2.8: A set {w} is a set {o,} satisfying
Xw) =0 and

z z '(t); - a}r’n‘ Iein{ ‘Ez‘m‘ = 1.
n>mi
Definition 2.9: A simple point of J6(K) is a point K
of MH(K) such that all points of J}(K) in some
neighborhood of K are points of just a single surface

Mt [D(K)], and such that the inverse functions
w’(K) are single-valued, continuous functions of

K € JGt(K) in some neighborhood of X.

Surfaces MH[D,(K)], corresponding to diagrams
D,(K)that have parts that touch the rest of the diagram
at only two points (vertices), but that contain other
vertices, are not to be considered. They always
coincide with surfaces of simpler diagrams (or are
null).

P. Landau Condition for Physical Region
Singularities
Definition 2.10: The Landau condition for physical
region singularities is the condition that M.(X) be

analytic at points K of $(K) — HF(K).

21 That the Landau surfaces can be expressed in this parametric
form has been noticed also by Logunoy, Todorov, and Chernikov.
See 1962 International Conference on High Energy Physics at CERN,
p. 695. A. A. Logunov, L. T. Todorov, N. A. Chernikov,see also
Nucl. Phys. 50, 273 (1964). My derivation consists of expressing the
g, of Eq. (2.38) first in terms of the internal momenta incident on ¥,
using (2.36b), and then expressing the internal p; in terms of the
A; = a;p; = Dy of diagram D.
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This condition was derived in Ref. 13 from a
macroscopic causality condition formulated within the
mass-shell S-matrix framework.

Q. The ic Rules

The second chief result of Ref, 13 is the “basic ie
rule” defined as follows.

Definition 2.11: The basic ie rule is the assertion
that for any simple point K of G} (K) N (K) there
is a neighborhood N(K) of K and a function
MY(K), defined and analytic at points of [N(K) N
Imo(K;K) > 0] — M7 (K) and coinciding with M (K)
in [#(K) N N(K)] — M7 (K). The function o(K; K) is

o(K; R) = 2q,(K)w,(K), (2.41)

where ¢,(K) and w[(K) are the quantities defined in
Sec. 20. Furthermore, the contributions from small
neighborhoods of points of N(K) N F(K) N MH(K)
to a summation over physical points can be repre-
sented by an integration of MY (K) over a contour that
passes around these points by detours into the
domain of definition of M¥(K). The MY(K) is an
analytic extension of M (K), and the superscript ¥
is usually omitted. [Actually, Im o(K; K) should,
according to the result obtained in Ref. 13, be replaced
by its minimum as the w), in Eq. (2.41) range over
arbitrarily small neighborhoods of the points ! (K).
This slight complication does not materially affect
our arguments, and it will be ignored.]

The points of .AZ:(K) N T(K) that are not simple
points fall into various classes:

Definition 2.12: An almost-simple point of J:X(K)
is a point K of M} (K) such that in some neighborhood
N(K) of R there is a function ¢'(K; K’), defined and
continuous in both K and K’, when both K and X’
are in N(K), such that, for every K in N(K)and K’ in
N(K) N MHK) O F(K), .

o'(K; K') = o(K; K'),
where o(K; K') is defined in (2.41).

At an almost-simple point K of MF(K) N F(K)
there is evidently no conflict between the ie rules
associated with different surfaces JM+{D,(K)]; the

distortions around the various singularities are
mutually compatible.

_ Definition 2.13: A simply multiplicative point of
MH(K) is a physical point lying on several M+[D,(X)],
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the D (K) of each of which is obtained from one single
larger D,(K) by contracting to points all but one of
various “independent parts” contained in it. An
independent part of a D,(K) is a part having an
independent dilation parameter in the energy—
momentum diagram D associated with A*H[D ]. The
various independent parts of a D, (K) touch each
other only at single points, and the Feynman loops
can all be confined to individual independent parts;
i.e., no loop need pass through several independent
parts.

Because the dilation parameters of independent
parts are independent it follows, after some algebra,
that the corresponding distortions can be made in
independent combinations of the dp;. The ie rules for
all of the surfaces A_(#[DC(K)] passing through a
simply multiplicative point can therefore be simul-
taneously satisfied. Thus there is no difficulty extending
the basic ie rule to simply multiplicative points of

HHK) N F(K).

Definition 2.14: The extended Landau surface
N[D] is defined just like AG[D], except that some,
but not all, of the «’s are allowed to be zero.

Definition 2.15: The positive-o. extended Landau
surface N*[D] is the part of N°[ D] that can be realized
with all «; = 0.

Definition 2.16: A semisimple point of Jo+(K) is a
point K of AG+(K) such that each point of J((K) in
some neighborhood of K belongs to the Landau
surface N°+[D] for some single fixed D = D(K).

Definition 2.17: Mf[D] is the part of N*[D] that
can be realized only with all o; > 0.

Definition 2.18: To(K) is the part of J(K) for which
no two initial (and no two final) energy-momentum
vectors are parallel.

The third chief result of Ref. 13 is the derivation from
macrocausality of the “extended ie rule,” defined as
follows.

Definition 2.19: The extended ic rule is the assertion
that for any semisimple point K of MH(K) in Fy(K)
there is a neighborhood N(K) and a function of
MY (K) defined and analytic at points of the nonempty

set
[N(R) 0 TT Im 0,(K; R) > 0] — J¢(K),

such that MY (K) coincides with M,(K) in
[F(K) N N(R)] — M+H(K).
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The functions ¢,(K; K) are the functions (2.41) for all
those surfaces MFT[DI(K)] such that AMi[Di(R))
contains K. These surfaces are codimension-1 analytic
submanifolds (in the mass shell) at K. [The sets
Im 0,(K; K) = 0 should, strictly speaking, be inter-
preted as the slightly smaller sets described in Defini-
tion 2.11.]

The codimensionality of a set is the difference between
the dimensionality of the set and the dimensionality of
the imbedding space. It is shown in Ref. 13 that,
except possibly at points of a set of codimension >3,
the function M (K) decomposes locally into a sum of
functions such that each has only those singularities
that lie on a single N'*[D]. Moreover, the analytic
structure of each term is what would be entailed by the
extended ie rule if the singularities were semisimple:
the extended ie rule applies to each term.

One can undoubtedly use the low dimensionality
of the exceptional terms as the basis for a special
treatment, and thus effectively circumvent them.
But rather than pursuing these fine points here, we
shall simply assume that the additivity property
holds everywhere. In particular, we shall take as our
primary /e assumption the “‘general ie rule.”

Definition 2.20: The general ie rule is the assertion
that, in some neighborhood N(K) of any point K of
F(K) N MFH(K), the function M (K) breaks up into a
finite number of terms to each of which the extended ie
rule applies. In particular, for each term the extended
ie rules specifies a region of continuation connecting
points of [F(K) N N(K)] — 4#(K), and summations
over physical points of N(K) are represented by
integrals along contours distorted slightly into this
region. Moreover, the decompositions in nearby
neighborhoods N(K) are “‘compatible” in the sense
that the distortions of contours can be extended
globally by patching together distortions allowed in
nearby neighborhoods.

The general ie rule stated above is very plausible if
one considers all singularities to arise from the unitary
equations. For if several singularity surfaces passing
through a given point are associated with unrelated
diagrams, then they will generaily come from un-
related portions of the unitary integrals, and hence
will be additive.

Definition 2.21 : An essentially real path is a path that
remains at real points except for arbitrarily small
distortions around points of JEj(K) made in accord-
ance with the general ie rules. The physical functions
M (K) at points of F(K) — J—t,j(K) are analytically
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connected by essentially real paths, according to the
general ie rules, and summations over physical
points are represented by contour integrals over
essentially real paths.

Remark 2.1: The results proved in Ref. 13 do not
include the physical region ‘“boundary points,” where
two or more initial or final energy-momenta are
collinear. However, the concept of continuation
around these singularities does not arise, for such
singularity surfaces do not separate the neighboring
physical points into disjoint regions: The neighboring
nonsingular physical points can be connected by real
paths that do not cross the singularity surface.

R. Persistence and the Interchange of Like Variables
A variable V, is the triplet
Vi=(k;, mg,t).

Thus
K= {V}.

Two variables ¥, and V7, are called like variables
if and only if

t,=1;, (2.42a)
m; = m;, (2.42b)

and
k%% > 0. (2.42¢)

[Equation (2.42c) is in fact implied by (2.42a), since,
according to Eq. (2.27), the sign of ¢, is the same as the
sign of k. However, Eq. (2.42c) is included for
emphasis.] Like variables refer to particles differing
only in their energy-momentum vectors k;.

The assumption was made (Sec. 2E) that a complete
set of experimental results is labeled by the various
possible sets K considered as unordered sets of vari-
ables. However, the variables of the analytic function
M (K) must originally be placed in some specific order.
Let the set of points K for which M (K) originally
represents the physical function be called .

Suppose K; € ¥ has two like variables and suppose
these occupy positions 7 and j. Let &,; be the operator
that exchanges the variables that occupy positions
i and j. The point K, is defined by

K, = 6,K,. (2.43)

One may now inquire whether analytic continuation
of M (K) along essentially real paths from K, e¢
to K, is possible, and, if so, what significance the so-
defined function M (K,) has, if any. The object of the
remainder of this section is to show that the physical
significance of the function M,(K) must persist when
continued along essentially real paths to outside the
original region of definition &, and that M,(K,) has,
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consequently, the same physical significance as M (K;).
It will further be shown that M (K,) must be equal to
M (K,) up to a possible sign, and that this sign must
be the same for all M functions in which these two like
variables appear and, moreover, must be independent
of the positions of these like variables within the sets
K. The sign is therefore a universal quantity depending
only on the type of variables interchanged. Once this is
proved, the remainder of the spin-statistics problem is
to establish the connection between this universal
sign and the spin of the particles corresponding to the
interchanged like variables.

The problem of proving the universality of this
sign under interchange does not generally arise in
field theory, because there one generally assumes that
the interchange of like operators gives at most a
change of sign, and that this sign under interchange is
independent of states upon which the operators are
acting. The reader willing to accept the corresponding
proposition that the sign under interchange of like
variables is a universal quantity, depending only on
the particle type, may proceed to Sec. 3.

Our natural idea of the connection between physical
functions and analytic functions is that, if a certain
physical function is represented by a function analytic
in some region, then this correspondence should
“persist” as the variables move through a region where
the physical function is defined and the mathematical
function remains analytic; there should be no break
in the correspondence so long as the mathematical
function remains analytic at real points.

This persistence property follows, in fact, from the
considerations of Ref. 13. There the M functions were
considered initially to be distributions defined over
test functions of compact support in momentum space.
In the case of identical particles, these test functions
can be Initially restricted to those having supports
containing no pairs of distinct points related by an
interchange of like variables. This restriction is
imposed to avoid possible ambiguities associated with
indistinguishability.

For a given process (specified by {m;} and {r;}), a
distribution is defined over this restricted space of test
functions. This distribution is defined by the set of
physical transition amplitudes between initial and
final systems represented by the allowed set of test
functions. According to Postulate B2 of Ref. 12,
these physical transition amplitudes are well defined
up to a possible over-all phase.

It follows from the work of Ref. 13 that, over the
support of any allowed test function, the distribution
can be represented by a function analytic except at

points of M:}(K). Furthermore, the functions defined
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in the intersection of two support regions must agree
up to an over-all phase, since they both represent the
same physical process and hence must give the same
relative amplitudes for various test functions defined
over the overlap regions. By patching these functions
together, one obtains a single function defined over
the union of the allowed support regions. This
function is single valued, since, by dimensional
considerations, the regularity region is simply connec-
ted. By construction it represents the single specified
physical process even when continued outside of some
original region ¥, That is, the physical significance
persists under analytic continuation, so long as the
real path of continuation reaches no point of G},
where the analyticity property fails.

By the very same argument, the result extends past

the points of M (K), provided continuation is made
along the essentially real paths; one simply patches
together the functions over the various support
regions, in each of which the result follows from the
work of Ref. 13. Thus the physical significance of
M (K)cannot suddenly change ; when continued along
essentially real paths, M (K) continues to represent the
correspondingly continued physical function.

The physical continuation from K to K, has the
effect of exchanging the detectors of the two like
particles. That this has no effect on the experimental
observables is just the content of the assumption of
Sec. 2E; the experimental results were there assumed
to be specified by the sets {k;, m,, t;} considered as
unordered sets of variables, and, in particular, no
additional information having to do with order of
variables is supposed to be needed to identify the
experimental result. Such information would be
required if the experimental results depended on which
piece of apparatus detected which particle.

One concludes from the above arguments that if
K, is such that the over-all conservation law is the
only one satisfied at K , so that M(KX) is proportional
to M,(K,), then the experimental correlations are
unaltered by the replacement of M (X,) by the M (K})
obtained by continuation along any essentially real
path from K,. In particular, at such a point X, we
have

M (Ky) = aM(8,Ky),

where M (§;,K;) is defined by analytic connection
from K; € § along any essentially real path, and « is
a phase factor depending on the arguments other
than spin indices displayed in

a = a,;(K).
The fact that the « are independent of the spin indices

(2.44)

(2.45)
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follows from the completeness of the set of spin
matrices P* in spin space: interference effects between
amplitudes labeled by different spin-quantum num-
bers are observable (see Ref. 12).

S. The Sign Change Under Interchange
of Like Variables

By virtue of postulate B2 of Ref. 12, linear combina-
tions of amplitudes labeled by K, differing only in the
values of k,, are observable; these are just the usual
interference phenomena. This implies, as a generaliza-
tion of Eq. (2.44), which we now rewrite as

M(K'; K") = ay(K'; KM (E,K'; K"), (2.46)

that
MK K"y 4+ MAK"; K") = a,(K’, K"; K")

X [M(E,K"; K"y + M (§,K"; K")], (2.47)
where K" and K" are sets differing only by values of the
k. Substitution of (2.46) into (2.47) gives
(X.;jl(K/, KI/I; K;/)[ME(K/; K") + MC(K'"; K”)]

= o }(K'; KIM(K'; K")
+ OC;;}(K"’; Kﬂ)Mc(Km; .KH)‘ (2.48)
If M(K"”;K") is zero but M {K’'; K") is not, then
(K, K", K"y = a~Y(K'; K"). If both functions are
nonzero, then there are two possible solutions of
(2.48). The first is

ay(K', K" K"y = a(K'; K")
= o, (K"”; K"). (2.49)
This implies that «,(K’; K”) is independent of K'.
On the other hand, we know that a,(K’; K")a,(8,,K’;
K") =1, since a double interchange is the identity.
The nondependence on K’ then implies

o‘ii(Kl; K" = O‘i;‘(K” = 41 (2.50)
The alternative solution to Eq. (2.48) gives
Mc(gﬁK ’K ) — Mc(gin ;K ) (251)

MK K MC(K™ K
This says that M,.(8,,K) equals M}(K) up to a phase
factor oy (K'; K”) that is independent of K’. This K"
independent phase factor must again be +1 or —1,
as before.

If M,(K) had singularities at real points, then
(2.51) would contradict the /e rules. Thus solution
(2.49) must hold for M functions having singularities
at real points. But the unitarity equations demand
there be singularities at least at normal thresholds.
Thus only the case (2.49) is possible, and we have

MK ; K") = a (K" )M (,K'; K"y, (2.52)
where «,(K") is either +1 or —1.
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T. Equality of Sign Changes for Interchange
of Like Variables

If the set K’ of M(K'; K”) = M(K) contains several
like variables located at positions i, j, k,- -+, then
there will be corresponding signs a;(K"), ou(K"),
;,(K"), etc. These signs must all be equal. To see this,
let the exchange &, be applied to both sides of Eq.
(2.52). This gives, suppressing the K” dependence of
the o’s,

o, M(8;K) = oy, M (8:46:K), (2.53)
which, with the replacement of K by §,,K and cancella-
tion of «;, , becomes

M(8,;6,:K) = M(K)

= o;;M(8;;8,;8,.K)
= a,;M(8,.K), (2.54)
since, as may be readily confirmed,
6558:585n = e (2.55)

But Eq. (2.52), with j replaced by k, together with
(2.54), gives

O = Oy (2.56)
This implies equations like
(2.57)

Hence, all the «(K") referring to exchanges of this
particular kind of like variables are equal.

Ly = Qg5 = Kgj -

U. Order-Independence of Sign Changes Under
Interchange of Like Variables

The sign o,;(K”") is independent of the order of any
like variables occurring in K”, for the relation (2.52)
can be continued along essentially real paths to the
point where the like variables of K” are exchanged.
That is, o;;(K") = &;;(6,,K").

V. Persistence of Unitarity Equation

Initially arbitrary phases can be specified so that

the no-scattering part is unity:
So(K’; K") = 8(K'; K”). (2.58a)
This convention is uniformly adopted in each of the
original regions arising in the proof of the persistence
property. Thus the unitarity equation takes the form
M(K'; K") + M*(K"; K')
= —> M(K'; K)YG(V)M*(K"; K)
k

= —Y M(K; K")G(V)M*(K; K') (2.58b)

at all real points connected to a physical point by a
real path. That is, the form (2.58) of unitarity “per-
sists.”” Of course, individual terms continue in different
ways around various singularities, but the entire
equation, nonetheless, remains true.
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W. Sign Change for Interchange of Related
Like Variables

The sign change «;,(K") for the interchange of two
like variables of K’ in M (K'; K”) is the same as the
sign change &;,(K') for the interchange of the two
corresponding like variables of K”, in the special case
where K’ and K” are originally equal. One sees this by
applying both interchanges to the unitarity equations
(2.58). The right-hand sides become the right-hand
sides of unitarity at the new point. The two terms on
the left, which are complex conjugates in the case
K’ = K”, become the terms on the left of this equation
only if «;,(K") = &;(K’).

X. Universality of Sign Change Under Interchange of
Like Variables

By virtue of the result of the above section the sign
change «;(K") is in fact independent of K”. If one
interchanges like variables of K’, but not K", for the
case in which K’ originally equals K", then the left-
hand side of (2.58) is multiplied by o;(K") = &;(K’).
Since the right-hand side is a sum of positive numbers,
each of these must undergo this same sign change in
order that the equation remain valid. Thatis, «;,(K") =
&,;(K’) = a;(K) = &,(K)for all K such that M(K’; K)
is physical. The sign change is therefore a universal
number depending on the type of variables inter-
changed but not on the position that these variables
occupy in M (K) or on the particular M (K) in which
the variables occur.

Remark 2.2: No interchange of variables between
initial and final sets has been discussed. In terms of the
variables K = {K’, —K"} we consider only inter-
changes of variables having the same type of variables,
including sign. However, the interchange of two like
variables of type ¢; induces the same sign change as the
exchange of two like variables of type —¢;. This is a
rephrasing of the result of Subsection 2W.

Remark 2.3: The sign change holding for the M (K)
must evidently hold for the M(K) as well, by virtue of
considerations of interference effects between different
cluster terms.

3. STRUCTURE THEOREMS

Some properties of the functions B(K) represented
by bubble diagrams are derived in this section.

A bubble diagram B is a collection of directed line
segments L, and signed circles called bubbles. The L,
are directed leftward and each one either issues from
the left side of some bubble, or terminates on the
right side of some bubble, or does both. In this Jast
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case the line L, is called an internal line of B. In the
other two cases the line is called a final or an initial
line of B, respectively. The bubbles of B are partially
ordered by the requirement that each internal line
terminate on a bubble standing left of the bubble
whence it issues.

Each fine L; of a bubble diagram B represents a
variable (p;, m,, t;) and each bubble b represents a
function F,(K}; K;), where K is the set of variables
represented by the lines issuing from the left of 6 and
K, is the set of variables represented by the lines
terminating on the right of 4. The function MZ(K)
represented by B is a function of the variables rep-
resented by the external (noninternal) lines of B and
is defined by

MB(K) = 2 H F(K;; K3) H Gi(vi)y

int %&B i

(€RY

where the summation is over all physical values of the
variables represented by the internal lines of B. and
the product over i runs over the indices i of all the
internal lines L, of B. The G,(v,) are the spin-space
factors (2.22) associated with the internal lines L,,
and their spin indices are covariantly contracted on
corresponding indices of the F,. The function F,(Kj;
K}) is either M(K;; K;) or MY (K, *; K;*), according
to whether the sign of 4 is plus or minus.

Remark 3.1: The summation over physical points is
represented by integrations over contours that are
distorted about singularities of the F, in accordance
with the ie rules described in the earlier sections.
Our first task will be to determine when the distortions
prescribed by the various relevant ie rules are mutually
compatible.

Remark 3.2: The decomposition principle is, apart
from the phase factors a,, graphically exhibited by
representing M(K'; K") as a sum of bubble diagrams.
Each term in the sum consists of a column of plus
bubbles such that every line represented by K’ issues
from the left of some bubble and every line represented
by K" terminates on the right of some bubble. The
summation is over all different ways that the external
lines can be connected to a column of bubbles. The
contributions from certain of these terms will vanish
due to the conservation law and mass constraints.
Unitarity in the one-particle system requires that the
“trivial” two-line bubble associated with an unscat-
tered line be the “‘unit” operator G,(v)d(k]; k),
aside from a phase factor that can be defined to be
unity. (This definition fixes relative initial and final
phases.)
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Definition 3.1: With respect to MB(K), the physical
points $(K) will mean the original points of definition
of MP(K). At these points all the occurring M,(K;; K,
are evaluated at physical points or at points infinites-
imally removed from them in the manner prescribed
by the ie rules. Analytic continuations from these
original (physical) points will be discussed later.

Definition 3.2: A D' < B is a Landau diagram D
that can be constructed by replacing each bubble &
of the bubble diagram B by either a connected Landau
diagram D? or by a point vertex ¥?. The DY is required
to be a DYK) such that MH[DYK)] is a Landau
surface corresponding to b.

Definition 3.3: A contraction D = D' of a Landau
diagram D’ is a Landau diagram D that can be
obtained by shrinking to points certain internal line
segments L, of D' and then removing all the line
segments that terminate at their own origin points.
D' is considered a trivial contraction of itself.

Definition 3.4: A D > < Bis a Landau diagram D
that is a contraction of some Landau diagram D’ < B.
If Dis D>< B, then B is said to support D, and
conversely.

Definition 3.5:
MEEK)Y = U M[DK)] (3.2a)
DIEK)YD<B
MB(K) = closure of MF(K), (3.2b)
HJEKy= U M[DLK)], (3.2¢)
DJAK)DCRB
ME(K) = closure of ME(K), (3.2d)

F(K) = {K: K is a physical point}. (3.2¢)

Remark 3.2: Every MZ®(K) contains a factor
(2m) 04 (2k,).

Definition 3.6: For a connected B

MEK)

B =
M) = o)

(3.3)

Theorem 3.1: (First Structure Theorem)

If the functions M, (K) are analytic at points K of
F(K) — J6(K), and if the general ie rules are valid,
then the function MZ(K) represented by a connected
diagram B is analytic at points K of 7(K) — SB(K).

Proof: Define R(B, K) to be the set of physical
points represented by the internal lines of B when the
variables represented by the external lines of B are
fixed at the physical point K. The general /e rules then
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imply that the summation over physical points oc-
curring in the definition of MZ(K) can be represented
as an integral over a contour that coincides with
R (B, K) except for infinitesimal distortions into the
appropriate upper or lower half o, planes near-the

points of the sets 47 (K,) corresponding to the func-
tions M, (K;; K,) or M¥(K,*; K;*), respectively. The
general ie rules also assure that the various distortions
associated with various surfaces N*[DY], corre-
sponding to a single bubble b, do not conflict with one
another. However, the distortions associated with
surfaces N+[D?] corresponding to different bubbles b
must also be compatible if the ie rules are to assure
a representation of MZ(K) in which the contours can
be made to avoid all singularities. We therefore
examine the compatibility requirements on the
distortions associated with a set of surfaces N[ D],
one for each bubble b of B.

The integration region is constrained by conserva-
tion-law and mass constraints. The conservation-law
requirements are automatically satisfied if the inte-
gration variables are taken to be Feynman loop
momenta h,. Variations of these parameters A, are
subject, however, to the various mass constraints
dp? = 0, where p; is the momentum—energy vector
associated with the internal line L, of B. The variations
dp? are given by

51’? =2 Z pinOhy,
f

where n;, is the number of times loop f passes along
line L; in the positive sense minus the number of times
J passes along L, in the negative sense.

To calculate the variations do, one may write,
using Eqs. (2.41) and (2.38) and suppressing the
prime on w,,

(3.4)

— b,..b
O'b - zqnwn
n

= —2 2 Py,

n exi
= Z E P?fmwz
n int j
=2 P2 €0,
int j n

= i%‘jp?A’; , (3.5)

where p? is the energy-momentum vector of the jth
internal line L} of DY, and A? is the difference of the
two end points of the line L? of the energy-momentum
diagram D? associated with M+[D?]. The variation
da,(K; K) for K in the neighborhood of a fixed point

K of M+[D?] is then
b0, = 3 8pIAYR)

int j

= 3 nj,0h,A,

int j

(3.6)
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where n}, is the algebraic number of times loop f
passes along line L? of the diagram D, obtained by
replacing the bubbles b of B by the connected Landau
diagrams D?. The particular path within D? taken by
the loop f'is irrelevant to do,, since the sum of n?,A?
around any closed loop of D? is zero: this sum is just
the sum of vectors around a closed loop of the
energy-momentum diagram D?.

By the theory of linear equations, the variations
do, and dp? can be specified in any desired manner by
an appropriate choice of the 64,, unless there is a set
of «’s, not all zero, such that

S aping, + 2 Al = 0 (3.7
i bsJ

for all /. Now the vectors A can be expressed as

(3.8)

since both sides represent the vector of D! corre-
sponding to the line L} of D! (see Def. 2.4). Thus
Eq. (3.7) can be written

! —
Z a;p;tt;; = 0,
3

b_ . b.b
A} = ofp;,

(3.7

where the sum now runs over all internal lines L; of
the D, < B. The « is «;, for internal lines L, of B and
o} is o, for internal lines L? of D?.

The Eqgs. (3.7') are just the Landau loop equations
for D,. Since the conservation-law and mass condi-
tions are satisfied by the construction, the various ie
distortions associated with the various N*[D] are
mutually compatible at a point K of R(B, K) lying on
the intersection of these surfaces N+[D?] unless the
Landau equations are satisfied at K. That is, the
required distortions are mutually compatible at every
point K of R(B, K) for every combination of surfaces
N*+[D], one for each b of B, for all points K of
F(K) — MB(K).

The wording of this argument is for the case that
there is only one o, for each b, which is the case for a
point of R(B, K) that corresponds to a simple point
of each A (K,). But for semisimple points of sz(Kb)
there are several ¢,, and the distortion must be
simultaneously into the upper half-planes of each.
Thus the sum over b in (3.7) should include several
terms for a single b, for any point of R(B, K) that
corresponds to a semisimple point of ﬂ;j(Kb).
These several terms will have different values of the
a? in A} = alp?. These terms are necessarily linearly
independent. [See Theorem 8 of Ref. 13] Thus again
(3.7) is soluble only if (3.7') is soluble. The ®; are now
somewhat more complicated functions of the original

o’s, but the argument is not essentially different from
the one given above.
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It is also required, for analyticity, that the ie
distortion to imaginary values be a continuous
function of the real point K of R(B, K). If K is a
simple point, or a semisimple point, of all the
MH[K,], then each o,(K; K) can be extended to a
function ¢,(K; K’) continuous in both variables in a
neighborhood of K. The space of the allowed 8k, can
be solved for in terms of the do, . Since the equations
are nonsingular, this space of the allowed oA, will be a
continuous function of the do,, and hence also of the
point K in R(B, K), for simple and semisimple
points.

The considerations for general singular points can
be reduced to those for simple and semisimple points
by means of the additivity property asserted by the
general /e rules.

It follows from the above argument that the
contours can be distorted so as to remain in regions
of analyticity for all K in §(K) — ACB(K). To prove the
theorem one needs, however, also to establish the
analytic character of the surface R(B, K). To examine
this question consider the transformation from the N,
variables A, to the set of N, variables p? and N, — N,,
other variables x;, where the N, variables p? are the
squares of the momentum-energy carried by the
internal lines of B. For K in §(K) — AB(K) and K in
R(B, K) the loop equations are not satisfied. Thus
the variations dp? and do,, considered as functions
of the dh,, are linearly independent. Thus the dp? are
themselves linearly independent. Hence it is possible
to choose, for any K in (K) — A:B(K) and any K in
R(B, K), a set of N, — N,, variables x;, linear in the
h, , so that d(p?, x;)/0h, is nonzero in a neighborhood
of R. This implies,?2 for K in $(K) — MB(K), that
every point of R(B, K) is an “interior point” of
R(B, K). In fact, R(B, K) is an analytic manifold,
which means that each point of R(B, K) is contained
in an open set of points of R(B, K) that is the image
of an open set in the space of the N, — N,, real
variables x;, under an analytic mapping k, = k,(x;).

Since R(B, K) is defined as the common zeros of a
finite set of analytic functions, it is necessarily a closed
set. But a closed set consisting of interior points can
have no boundary points. Thus, for X in §(X) —
MCB(K), the set R(B, K) is a closed (N,-N,, )-dimen-
sional surface without edges (i.e., a cycle). This
surface is confined to a bounded region in k; space,
and is easily shown to be of finite measure. Moreover,
the functions k,(x,) are analytic (in fact linear) in K.
Thus, for K in §(K) — ./ECB(K), R(B, K) is a real
analytic manifold of finite measure depending

22 S, Bochmer and W. Martin, Several Complex Variables
(Princeton Univ. Press, Princeton, N.J., 1948), p. 39.
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analytically on the variables of K. Moreover, as
shown earlier, the contour can be distorted so that
the integrand is analytic at all points X’ on the contour.
It therefore follows from Theorem A2 of Appendix A
that the integral M2B(K) is analytic at points K of
T(K) — ME(K). Since all the relevant quantities are.
well defined and depend analytically on the relevant
variables, it is, of course, highly plausible that the
integral MZ(K) should be analytic, though the proof
is not completely trivial.

Definition 3.7: A simple point of M:B(K) is a point
R of B(K) such that in some neighborhood N(K)
of R all points of JZ(K) belong to the M[D,] of only
one D, > < B, and such that the « in (3.7), when
subjected to the constraint 3, |a/p;| = 1, are uniquely
defined continuous functions of the X in N(K) N
MCB(K), apart from a sign ambiguity.

Definition 3.8: MB+(K) is the subset of ME(K)
that can be achieved by restricting the o} in Eq. (3.7')
to be positive or negative for lines L; of D, contained
in D¥’s corresponding to plus or minus bubbles b of B,
respectively. The remaining lines of D,, which are just
the lines occurring in B itself, can be either positive or
negative.

Definition 3.5': MB+(K) = closure of M6B+(K).

Definition 3.9: ‘Alf(K) = {K:K is a point of .A—bf(K)
that is not a simple point of MB(K)}.

Theorem 3.2: (Second Structure Theorem)
In Theorem 3.1, the set $(K) — MB(K) can be
replaced by the set $(K) — MBH(K) — ME(K).

Proof: For points on MEB(K), it is not possible to
arbitrarily specify all the variations do, and ép?. But
it may nonetheless be possible to find variations that
keep p? = 0 and %, Im do, > 0, where 7, is the sign
of bubble b of B. This is a sufficient condition for
regularity, since it allows one to keep the contour in
the region of analyticity.

The variations are subject to the condition (3.7).

If R is a simple point of GB(K), then there is only one
such condition (3.7), since each such condition gives
either another A [D] or another set of «’s. When
there is only one condition (3.7), all but one of the
variations {dp?, do;,} can be specified, and this
remaining one depends continuously on the specified
ones. Suppose, for some pair of b, the sign of the
ratio of the o, of the unique (3.7) differs from the
ratio of the corresponding 7,. Consider a variation
in which the do, for one of these &’s is the dependent
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variation and the do, of the other one of these b’s is
large compared to the remaining independent ones,
which can be considered relatively infinitesimal If
the dp? are taken to be zero, then Eq. (3.7), together
with continuity, assures that 7, Im do;, > O is satisfied
for the one dependent variation do, if it is satisfied
for all the independent ones. Thus, the function
MB(K) is analytic at simple points of $(K) N JZ(K)
that are not on A0B(K), which is what the theorem
says. The signs of the «, in Eq. (3.7) carry directly
over to the corresponding signs in (3.7") because the
a? in (3.8) are all positive. Theorem 3.2 goes beyond
Theorem 3.1 only if the single linear dependence
relation (3.7) involves at least one «, contribution.
Thus the dp? contributions will still be linearly
independent and R (B, K) will be an analytic manifold,
just as in Theorem 3.1.

Definition 3.10: Let D, be the Landau diagram
corresponding to a simple point K of MP*+(K). The
corresponding energy-momentum diagram D, is the
diagram obtained by replacing each L; of D, by
the energy-momentum vectors A; = a;p; of Eq.
(3.7), with 7,0, > 0 (9, is still the sign of bubble
b). The o(K; KR) for D,is now defined exactly as in
Eq. (2.41).

Definition 3.11: The basic ie rule for the functions
MZEB(K) is the same as the “basic ie rule” defined in
Def. 2.11, except that MZ(K) replaces M, (K) and

./ECB+(K) replaces ﬂ)j(K). That is, this rule asserts
that MB(K) is analytic at points of the upper half
o(K; K) plane near a simple point K of M(B+(K).
However, there is one proviso: at least one line of the
diagram D, must correspond to an internal line of
some bubble of B; the basic ie rule for the function
MB(K) asserts (by definition) nothing about the case
in which every line of D, is a line of B.

Theorem 3.3: (Third Structure Theorem)
If the assumptions of Theorem 3.1 are satisfied,
then the basic /e rule for the function MZ(K) is valid.

Proof: The arguments leading to Eqs. (3.6) and
(3.7) give, similarly,
da = > n;0hA;

int 7

= Z n;0h,0ip;
int j

= > a;pin,oh, + X a,Ainj oh,
int? b,J

90,

= > o,pn;:0h, + D «
2 D, f f 2 bahf

int ¢ 4

= Z “i‘spf + Z %003,

int¢ b

oh,

(3.9)
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where now the 4, include also the momentum-energy
vectors carried along some paths similar to Feynman
loops, but unclosed, that enter D, at certain external
vertices and leave at others. These vectors provide for
the variations of the external variables and will be
called the external parameters h,. The actual paths
they take along the lines of D, are not relevant to our
argument.

The basic ie rule to be proved refers only to simple
points K of $(K) N MB(K). At these points, there is
only one equation (3.7) and consequently all the
dp? and dg, except one can be fixed arbitrarily by
appropriate choice of the internal dk,, as mentioned
in Theorem 2. Therefore if we shift o(K; K) into the
upper half-plane by variations of the external dk,,
then the internal 6k, can be adjusted so that all dp?
and all but one of the do, vanish. This last do;,, when
multiplied by «,, must therefore be shifted into the
upper half-plane, since o is. But then by a slight
adjustment of the internal 04, the remaining o,0, can
also be shifted into their upper half-planes, keeping
the dp? = 0. This achieves the required result of
moving all 7,0, into their upper half-planes, which are
the regularity regions, while keeping all the ép? = 0.

This argument depends on the assumption that D,
contains some line that is an internal line of the
Landau diagram D? corresponding to some bubble b
of B, since otherwise the contributions da, in Eq. (3.9)
all vanish. If D, has only the lines L, that are the lines
occurring already in B itself, then continuation past
the singularity is not possible in general. On the other
hand, if D, contains any line that comes from the
interior of any bubble b of B, then Theorem 3.3 gives
the rule for continuation past this singularity surface
unless dc is necessarily zero. This circumstance can
occur only if the external vertices of D, all coincide or
all lie on a single line that is parallel to every external
line incident upon all but one of the external vertices.
(The external vertices are vertices upon which external
lines end.) In this situation the mass constraints on the
external lines force all variations do to vanish, and
hence no rule for continuation past the singularity is
provided by Theorem 3.3.

4. THE POLE-FACTORIZATION THEOREM

This section is devoted to a proof of the pole-
factorization theorem. Some definitions are first
introduced.

Definition 4.1: A pole diagram D, is a connected
Landau diagram having precisely two vertices V,
and ¥, and precisely one internal line L,. Each

vertex therefore contains exactly one of the two
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endpoints of L,:
€y = +1,

€, = —1.

(4.1a)
(4.1b)

v’

Definition 4.2: The sets » and ' defined by a pole
diagram D, are the sets of external lines connected
to the vertices ¥, and ¥V, respectively. The # and %
represent the corresponding index sets

v={ireg, #0,i7# p}, (4.2a)
¥ = {itey #0,i % pl. (4.2b)
Definition 4.3:
q, = —ezx Di€iy = %—ki’ (4.3a)
v = =2 pew =2k =—q,, (43D
S, =¢>=38,. (4.3¢)

Remark 4.1: For a pole diagram D,, one has
MF[D,] = M[D,] = {K:S,(K) = u2}, where u, is
the mass of the particle associated with line L, of D,,.
For M (K), the condition of analyticity near K of
M[D,] N F(K)in Im o(K; K) > 0 implies analyticity
near K in Im S,(K) > 0, as is shown by some simple
algebra. For the function M represented by a minus
bubble, this region of analyticity is switched to
—Im S,(K) > 0.

Definition 4.4: A quasisimple point K € A[D,] N
J(K) of a function of the form
F(K) = 3 M;(K)
BeH
is a point K e M[D,] N F(K) such that F(K), con-
sidered as a distribution®® over a real neighborhood of
K, admits a decomposition into analytic functions?

F(K) = f(S(K), W(K))
= lim [f,(S(K) + ie, W(K))

— F(S(K) — ie, W(K)], (4.5)

where f, and f_ are analytic functions of their argu-
ments in the region corresponding to real Kin a neigh-
borhood of K and 0 < e < 5 > 0, except possibly
at points where S(K) = u2 and € = 0. The set W(K)
is some set of arguments such that [S (K), W(K)]
gives a one-to-one analytic mapping of a neighborhood
of K [in the domain of definition of F(X)] into a
bounded open set in (S, W).

(4.4)

23 Functionals f[¢], more general than distributions, could be used
here.

24 4, J. Bremmerman, Distributions, Complex Variables and
Fourier Transformations (Addision-Wesley Publishing Co., Inc.,
Reading, Mass., 1965), p. 48.

HENRY STAPP

Definition 4.5: A function F(K) of the form (4.4)
is said to have no pole (or worse) singularity at a
quasisimple point K € A[D,] N F(K) only if

lim f (S,(R) & ie, W) = 0. (4.6)
€=0

Definition 4.6: The pole assumption P, for a simple-
point K of M*(K) lying on M[D,] N F(K) is the
assumption that all pole singularities of functions
F(K) of the form (4.4) are associated with pole
diagrams in the limited sense that if K is a quasisimple
point K € A[D,] N F(K) of F(K), then F(X) has no
pole (or worse) singularity at K unless some B € 3
supports D, . Furthermore, the ie rule for the part of
F(K) contributing to the residue (4.6) at such a point
R is the same as the ie rule for the various D, > <
B e $, provided these ie rules are all the same (j.e.,
all have the same sign in +£Im S, > 0).

Definition 4.7: The stability condition on physical-
particle masses is the condition that the mass of any
(physical) particle is less than the sum of the masses
of any set of particles into which is allowed by
selection rules to decay. Thus any (nontrivial) bubble 5
that represents a nonvanishing M,(X,) must have at
least two initial lines and at least two final lines. And
correspondingly, each vertex ¥, of any Landau
diagram must contain the leading endpoints of at
least two lines and the trailing endpoints of at least
two lines: formal Landau diagrams, not satisfying
this condition, are spurious and can be ignored.

Theorem 4.1 (Pole-Factorization Theorem):
Assumptions:
(1) Unitarity [Eq. (2.20)],
(2) Cluster decomposition [Eq. (2.30)],
(3) Landau conditions for physical region singulari-
ties [Def. 2.10],
(4) Basic ie rules [Def. 2.11],
(5) Stability conditions for physical-particle masses
[Def. 4.7].
Consequences: Let K be a simple point of AH(K)
lying on M[D,] N F(K) such that the pole assumption
P, is valid at K. Then M,(K) has a pole singularity at
R, whose residue

(R)= lim [S(K)—@IM(K) (47)
Reécv(_}g)=ﬂpz
X Im Sy(K)>0
B K = M (K)o M(K,). 4.8)

The sets K, and K, are the sets of variables associated
with the lines, both internal and external, incident
on vertices ¥V, and V., respectively, of D,(K). The
indices associated with particle p are covariantly
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+ | — = I = - +

FiG. 1. Unitarity in box notation. The external lines are sup-
pressed and a summation over all possible sets of internal lines is
understood. The unit operator 7 is a product of factors

G(v)o(k;; k7).

contracted with the corresponding indices of G,(v,),
which is the spin matrix (2.22). The factor « is

o= (4.9)

where o, is the sign induced by interchange of two
like variables p, and «, and «, are the phase factors
occurring in the decomposition

M(va‘) = (xaMl(Kv)Ml(Kv’)
+ M (K)G(v,)0(ky; k3)
+ 2 ap H Ml(Kps)~

P#a,b s

(4.10)

Here K- is the set of variables consisting of all those
in either K, or K,. This set is just the set K plus two
variables: one for an initial particle p and one for a
final particle p. That « is independent of the order of
variables in K , is assured by Postulate £2.

Proof: The functions M(K’, K”) and M*(K"*; K'¥*)
will be represented by plus and minus boxes, respec-
tively, with the sets of lines issuing from the left and
terminating on the right of these boxes being the lines
representing the sets K’ and K”, respectively. Then the
cluster property is the assertion that the plus (minus)
box is equal, apart from the phases «,, to a sum of
bubble diagrams, each consisting of a column of plus
(minus) bubbles, with the sum being over all ways of
connecting the given external lines to a column of
bubbles. In this notation unitarity takes the form
shown in Fig. 1.

Multiplication of M(K) by unitarity gives the
equation represented by Fig. 2.

The terms on the left of Fig. 2 that support D, will
be classified with the aid of the following two lemmas,
which depend upon the idea of “key bubble”:

Definition 4.8: A key bubble (relative to D,) of a
bubble diagram B is a bubble b of B such that every

+ |-+ = |+

FiG. 2. Result of multiplying M(X) by unitarity.
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path in B from a line in the set ¥ defined by D, to a
line in the set »” defined by D, passes through b.

Lemma 4.1: If B supports D,,, then B has a key
bubble (relative to D).

Proof: ““B supports D, means there isa D < B
having an internal line L such that the contraction
to points of all other internal lines of D gives D,,
with L of D becoming L, of D,. Every path in D from
» to »" must pass along L, for if there were one not
passing along L, then the contraction would give a
path in D, from » to »' not passing along L,, which
is not possible. Since every path from » to »" passes
along L, each of these paths passes also through any 5
such that L is an internal or external line of the D?
replacing b of B. At least one such b must exist, and
any such b is a key bubble.

3

This argument proves, in addition to the lemma,
the result asserted in the following coroliary.

Corollary 4.1: Any L of D < B that becomes the
L, of D, > D < B upon contraction of the other
lines of D is an internal or external line of the D?
replacing some key bubble of B.

Convention 4.1: In this section all trivial (two-line)
bubbles will be considered absent: the unscattered
particles of M(K) will be represented by single lines
containing no bubbles.

Convention 4.2: Bubble diagrams that correspond
to functions B(K) that vanish because of combinations
of mass constraints, conservation laws, and stability
conditions will be considered not to exist,

Definition 4.9: A direct path connecting two
bubbles is a path that touches these two bubbles at,
but only at, its two endpoints.

Lemma 4.2: A B that supports D, has precisely
one or two key bubbles (relative to D,, always).
In the first case, no L of any D < B can become the
L,of D, > D < Bunless L is an internal line of the
D? that replaces the one key bubble. In the second
case, the two key bubbles are connected by a line L
of B. Moreover, the removal of L from B disconnects
the part of the diagram connected to » from the part
connected to »'. This line L of B becomes L, of
D, > < B upon contraction of the rest of the
diagram. No other L of any D < B can become the
L,ofa D, > D < B, in this case of two key bubbles.

Proof: By Lemma 4.1, there is at least one key
bubble. If there is precisely one key bubble, then any
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L of D < B that becomes the L, of D,> D < B
upon contraction is an internal or external line of the
D}, replacing this key bubble, by Corollary 4.1. If L
were an external line of D?, then it would have to be
an internal line of B itself. But then the bubble of B
lying on the other end of L would also be a key bubble,
contradicting the supposition that there is only one
key bubble. Thus L must be an internal line of the D?
that replaces the one key bubble, in this case of just
one key bubble.

If there is more than one key bubble, then pick two.
These two are connected by some path in B, since B
must be connected in order to support the connected
D,. This path can be taken to be a direct path, by
removing closed loops. If this direct path touches
some other bubble &', then any path from 5’ to any
external line L, of B must pass through one of the
two key bubbles. Otherwise L, could be connected to
any specified external line of B by a path passing
through at most one key bubble: one could pass via
b’ directly to the last of these two bubbles lying on
some original path to that specified external line. But
then all external lines of B would belong to the same
set » or ¥’ to which that L, belongs, since a path from
v to »" must pass through all key bubbles, by definition.
But, by virtue of our definitions, all external lines of B
cannot belong to a single one of the two sets » or v/,
and hence any path from any b’ to any L, must pass
through one of the two key bubbles.

This implies, in turn, that every &’ lying on any
direct path connecting the two key bubbles must stand
to the right of one of these two key bubbles and must
stand to the left of the other of these two key bubbles;
otherwise the rightmost of the 5”s could have no
initial lines or the leftmost of the 4”’s could have no
final lines, which is not possible because of the
conservation-law requirement. Thus the two key
bubbles must be ordered, with one standing to the
right of the other, and this is (trivially) true also if
there is no &', since the connecting path is then simply
a single line segment L,, which is directed. If 5, is a
key bubble that stands right of a key bubble b,,
then all the lines of b, lying on direct paths connecting
b, to b, must be final lines of b, (which issue from the
left of b,), since otherwise either b, or some b’ on
some path from b, to b, would have to stand right of
b, , contrary to assumption or to the above result.

If b is a key bubble of B, its removal must give a
diagram B — b in which the parts connected to » and
', respectively, are relatively disjoint. The external
lines of b belonging to these two parts will be called
b* and b, respectively. They are disjoint, and all
external lines of & must belong to their union, since
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every one of these lines is connected in B — b to some
external line of B, by virtue of the fact that each bubble
of B has both initial and final lines.

All external lines of b, lying on direct paths to some
other (fixed) key bubble &, must belong to a single one
of the two sets b} or bY ; otherwise » and » would be
connected by a path that passes through &, but not
through &,, which is impossible, since b, is a key
bubble. Moreover, all the external lines of b, not lying
on any direct path to the (fixed) key bubble #, must
belong to a single one of the two sets b} or b);
otherwise » and »' could be connected by a path
passing through &, but not through b,, which is
impossible since b, is a key bubble. Thus the set of
lines of b, lying on direct paths to &, constitute one
of the two sets by b} or b} This set consists of only
final lines of b, if b, stands right of 4,. On the other
hand, we have:

Proposition 4.1: An internal line L of a diagram D?
replacing a key bubble b of B can become an L, of
D, > < B only if »* and 5" both contain both
initial and final lines of B.

Proof: The removal of L must disconnect b* from
b in D?, since otherwise » and »" would not become
disconnected by the removal of L, as is required if L
is to become an L, of D, > < B.If b* or b¥ consisted
of only initial lines or only final lines, then the energy-
momentum carried by L would have to be the energy—
momentum carried by this set of initial or final lines.
This conflicts with the stability requirements unless b
consists of a single line. But this possibility is precluded
by the requirement that vertices of Landau diagrams
must contain endpoints of three or more lines,
together with the mass, conservation, and stability
conditions and the positive-« condition imposed on
the D? by Definition 3.2.

Combining Proposition 4.1 with the result stated
just before it, we conclude that an L of D < B that
becomes L,, of D, cannot be an internal line of the D?
replacing the key bubble b, or, by exactly similar
arguments, b;. Thus any L of D < B that becomes
L, or D, must be an external line of some key bubble,
hence an internal line of B, in this case in which there
is more than one key bubble.

If there is more than one key bubble, then the L
of D that becomes L, or D, can only be an internal
L of B, as just shown. The two bubbles on either end
of this internal line of B are both key bubbles. Since
the line L connecting them becomes L, of D,, its
removal must leave the parts of the diagram connected
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to » and ' relatively disjoint. This proves the lemma
for the case of precisely two key bubbles, since the
existence of another L that becomes an L, of D, < B
would imply the existence of other key bubbles. It
remains to be shown that there can be no other key
bubbles.

Let b, and b, be the right-hand and left-hand key
bubbles on the two ends of some L of B that becomes
L, of D,, in the case of more than one key bubble.
Suppose there is another key bubble. If this other
key bubble stands right of b,, then the lines of b,
lying on the direct paths to this other key bubble all
lie on the right side of b, and constitute one of the
two sets b? or b The single line L, which is the only
line of b, lying on the direct path to b,, also constitutes
one of the two sets b? or b, and in fact the other one
of these two sets, since it lies on the left of 5,. Thus L
is the only final line of b,. This contradicts stability.
Thus, this other key bubble cannot stand right of b,.
Neither can it stand left of ;. Nor can it stand to the
right of b, and to the left of b,, since this would imply
the existence of a direct path between b, and b, that
parallels L, and hence precludes the possibility that L
becomes L, of D, as required. Thus there can be at
most two key bubbles. This concludes the proof of
Lemma 4.2.

Lemma 4.2 allows a classification of the terms o the
left of Fig. 2 that can support D,,. First there are terms
having only one key bubble. This single bubble can
belong to any one of the three columns. Then there
are the various terms having two key bubbles con-
nected by a line of B, the removal of which sepa-
rates B into two disjoint parts, one connected to the
set » and the other connected to the set »". And this
line must become the L, of D, upon contraction of
the rest of the diagram. The various terms supporting
D, are indicated in Fig. 3.

The protruding products of little plus and minus
boxes in the first and third terms are just the identity,
by virtue of unitarity, and can be dropped.

10
G

[ G G
Am el

Fic. 3. Decomposition of left side of Fig. 2 into the six possible
types of terms that support D, plus a remainder term R that does
not support D, . The line terminating at the top or bottom of a box
is supposed to end on some (nontrivial) bubble within that box.
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FiG. 4. Modified form of unitarity equation. The singled-out
line emerging from the left side of the unitarity equation can come
either from some nontrivial plus-bubble, from some nontrivial
minus-bubble, or from the incident lines of the right. Terms of this
third kind cancel the unity on the right of unitarity, leaving the
equation represented in Fig. 4.

For the next terms we make use of the identity
shown in Fig. 4.

The equation represented by Fig. 4 allows the line
leaving the lower minus box of term four of Fig. 3
to be shifted to the lower right plus box. Then unitarity
can be used to cancel the protruding products of plus
and minus boxes. An equation similar to that rep-
resented in Fig. 4 allows the fifth and sixth terms to
be cancelled. Extraction of the connected part then
gives Fig. 5.

The result claimed in the theorem now follows
essentially from the fact that first and third terms in
Fig. 5 are analytic in the upper and lower half S,
planes, respectively, as far as the pole contribution is
concerned. The detailed argument is as follows: Near
a simple point K of M[D,] N F(K) the first term of
Fig. 5 is (after the conservation-law & function is
factored out) the limit of a function analytic at points
K near K in the upper haif S, plane, according to the
basic ie rule. The second term, which has a factor
27d(S, — u?) coming from the phase-space factor
(2.13), can be decomposed into a sum of two functions,
one analytic at points K near K in the upper half S,
plane and the other analytic at points K near K in the
lower half S, plane. These two functions both have
pole singularities at S, = u2, but otherwise are
analytic at points K near K, since the two M-function
factors can have no singularities at a simple point XK.

Since the sum of the first two terms of Fig. 5 can be
decomposed into functions, analytic in the upper and
lower half S, planes, the same must be true of the
sum of the second two terms. These decompositions
into upper and lower half-plane parts are unique up to
a function analytic at K, by virtue of Theorem C3 of
Appendix C. Thus the residue at K of the sum over all
four terms in Fig. 5 of either the upper or the lower
half-plane parts must separately be zero. However, the

FiG. 5. Result of applying unitarity in lower-order sectors to
Fig. 3. The subscript ¢ denotes connected part. The phases oy,
here assumed to be unity, are discussed in the text.
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FiG. 6. Diagram indicating unitarity in the lower sector. Note that
the left-hand column of the first term has an extra unscattered line
that is not present in the fourth term in Fig. 3. The other two
columns also contain extra unscattered lines. These lines induce
phase changes.

residue at K of the sum of the last two terms is zero
for the upper half-plane parts by virtue of the pole
assumption P,, which says that this sum is the limit
of a function analytic in the lower half-plane, so far
as the pole contribution is concerned. Thus the
residues of the upper half-plane parts of the first two
terms of Fig. 5 must cancel. This gives just the de-
sired result (4.8), apart from the effect of the phase
factors «,,.

To complete the proof, the case o, 2 1 must be
considered. Then one must be careful about the
switching of lines on the boxes of Fig. 3 by means of
Fig. 4. The equation to be used is shown in Fig. 6.

In order to bring the fourth term in Fig. 3 into a
form where Fig. 6 can be applied, it must be multiplied
by the phase factors «, from the decomposition law
that multiply a contribution to the left-hand term in
Fig. 6 and divided by the phase factors that multiply
this contribution in Fig. 3. By virtue of Postulates
E2 and E3, this ratio of phases is a single phase that is
independent of the particular contribution considered.
It is in fact just o, times the «, of Eq. (4.10), as is
shown in Appendix B. After multiplication by this
phase, one can apply Fig. 6, which gives the product
of the two plus-bubbles appearing with the phase that
they have in the second term of Fig. 6. This phase is
just the «, of Eq. (4.10). Dividing now by the un-
wanted phase «,0,, one obtains the required Eq. (4.9).

Concluding Remarks

(1) If the point K were a simple point of both
MH(K) and MB*(K) for all B occurring in the third
term of Fig. 5, then the second part of the pole
assumption P, would not be necessary; one could
use Theorem 4.3 instead.

(2) It will be assumed in what follows that
MF[D,] N F(K) has a dense set of simple points so
that the pole-factorization property is valid for almost
all points of AMF[D,] NF(K). The validity of
this assumption can be confirmed by the methods of
Ref. 13.
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5. HERMITIAN ANALYTICITY

Hermitian analyticity is the property of scattering
functions whereby M (K'; K”) and —M}*(K"*; K'*)
are different boundary values of a single analytic
function. The central idea of the present proof is to
justify, within a strictly mass-shell framework, an
effective continuation in external masses.

Instead of the original M,, one considers the M,
of a “larger” process, the external lines of which are
those of a diagram constructed by connecting to each
line L; of the bubble representing the original M, an
“outer bubble” b,, which is connected to other bubbles
only along L;. The M, of the larger process will have
poles at S, = u?, corresponding to these lines L,,
and will contain the original M, as a factor of the
residue of the product of these poles.

The unitarity equation for the larger process will be
considered at a point P, where all S; = 0. Certain
continuations will then be made to points P where all
S; = u}, and the residue of the product of the poles
will be examined.

The unitarity equations at P, will consist of a sum
of terms each represented by a bubble diagram.
According to our basic pole assumption P, , a function
represented by a bubble diagram B can have a pole
singularity at S; = u? only if this diagram will
support a corresponding pole diagram. In order to
have a pole in each of the S the diagram must support
each of the corresponding pole diagrams. Thus,
according to Lemma 1 of Theorem 4, the function
represented by the connected bubble diagram B can
have pole singularities in each of the set of channel
energies S; only if for each 7, individually, the removal
of some single bubble b, of B completely disconnects
the external lines of one of the two complementary
sets associated with S, from those of the other of these
two sets.

Definition 5.1: A line of a bubble diagram is said
to be directly connected to another line if and only if
these two lines end on a common bubble. A set of
lines, consisting of one or more lines, is said to be
directly connected to another set of lines if and only
if some line of one set is directly connected to some
line of the other set. A bubble is said to be directly
connected to a line that ends on it or to a set contain-
ing a line that ends on it.

Definition 5.2: The bubbles of a bubble diagram B
that represents a contribution to unitarity can be
classed as initial or final according to whether they
contain endpoints of initial or final lines of B, re-
spectively.
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Convention 5.1: In this section, trivial two-line
bubbles will be considered inserted into the un-
scattered lines of each factor of a unitarity diagram,
so that no bubble touches both initial and final lines
of the diagram. Accordingly, each bubble is either an
initial bubble or a final bubble, but not both. And
each line is either initial, final, or internal.

‘Lemma 5.1: Let B be a connected bubble diagram
representing a term in a unitarity equation. Suppose
the initial lines J of B are divided into n > 1 disjoint
sets J,, and the final lines & of B are divided into n
disjoint sets F;. And suppose B is such that for each
i, individually, there is a bubble b; of B such that the
removal of b, from B completely disconnects the set
F, U J, from the complementary set § U J — &, U
J,. Then the internal lines of B can be divided into n
disjoint sets 7;, plus a remainder set IZ, such that for
each i either

(a) I,isdirectly connected to every line of &, but to no
line of ¥ — &, or

(b) I, is directly connected to every line of J; but to no
line of § — J;.

The set §; is defined to be F, or J; in cases (a) and (b),
respectively, and I, contains every internal line
directly connected to &,. (4 — B is the set of elements
belonging to A but not to B.)

Proof: If for some i the set J; is directly connected
to the set J — 3, (necessarily by an initial bubble)
and also the set F, is directly connected to the set
F — &, (necessarily by a final bubble), then the
removal of no single bubble can completely dis-
connect ¥, U J, from F U J — &F, U J,. Thus, the
stipulations of the lemma assure, for each i, either
that 3, is not directly connected to J — J, or that F,
is not directly connected to & — & . If for any 7 only
one of these two conditions is satisfied, then we define
&, to be the set J; or &, that is not directly connected
to J — J, or F — §,, respectively, and define /; to be
the set of all internal lines of B directly connected to
lines of §;. On the other hand, if both conditions are
satisfied, for some i, then we have two sets & and
&, one J; and one &, and two corresponding sets /;
and I;.

In this latter case it is impossible that I; — J; and
I, — I} both be nonempty. If I; — I, is nonempty, then
b; must lie at one end or the other of this set in order
that the removal of b; completely disconnect &, from
F U3 — & UE. Andif I, — I}is nonempty, then b,
must lie on one end or the other of J; — 7. Both these
sets being nonempty would therefore require both that
b, either touch ¥, or J but not J;, and that b, either
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touch J, or & but not &;. This is impossible, and
hence one of the two sets I} — I, or I; — I} is empty.
We adjust the definitions so that /; — I is empty,
which defines the I, for this case. The definition is
unique because I, — I; and I; — I; cannot both be
empty, as this would make I; = I, and the diagram
would not be connected.

Having defined the 7;, we must now prove them
disjoint. Two I, corresponding to two initial sets
&, = J, must evidently be disjoint. For if they con-
tained a common line, then the initial bubble con-
nected to this line would directly connect these two
sets &, = J,. But the defining characteristic of these
sets §; = J, is that no initial bubble connect a line of
J, to aline of 3 — J;. Similarly, two I;, corresponding
to two final sets §; = ¥, are disjoint.

Finally, the I, corresponding to an initial &, = J,
must be disjoint from the J; corresponding to a final
& = &,. For suppose I, N I; were nonempty. The
bubble b, would then have to lie on one end or the
other of the set I; N I;, in order that its removal dis-
connect J; from F;. Suppose, first, that b; were a final
bubble directly connected to F, = §;, and hence not
directly connected to &, . In order that its removal com-
pletely disconnect the lines of &, from those of ¥ —
F; it must be true that F, is not directly connected
within B to & — &,. For any bubble directly
connecting them could not be b;, since b; is not
directly connected to 7. But if the lines of &, are not
originally directly connected to those of & — &,
then we must have F; = &, since §; = J,. There is,
then, a set [}, and the set /; — /; is nonempty, by
construction. Thus b; must lie on one end or the
other of 7; — I, as mentioned before. This means
that b; must either be a final bubble directly connected
to &; = &, or it must be an initial bubble not directly
connected to §; = J;. This contradicts the assumption
that b; was a final bubble directly connected to &, =
&;, hence directly connected to no lines of  — F ;.

Suppose, alternatively, that b; were an initial bubble
directly connected to & = J,. Again we must have
F,; = & and I} — I, nonempty. Thus again b; would
have to be either a final bubble directly connected to
&, = &, or an initial bubble not directly connected to
€, =3,. This is again contradictory. Thus I, N I,
must be empty, which proves the lemma.

It follows from the definition of 7, that the energy
carried by the internal set I; is equal to the energy
carried by the external set &;. Moreover, the
energy carried by the set of all internal particles is
the sum of the energies carried by all of the final sets F,
(or by all of the initial sets ;). Thus the energy carried
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by the set /% of Lemma 5.1 is E® = X ¢?, where ¢? is
the energy part of the vector g, that is the energy-mo-
mentum carried by ¥, minus the energy-momentum
carried by J;, and the sum is over those i for which
&; = J;. The point P, is taken to be a point where
g; = 0 for all i. Thus E® is zero at P,. This means
I% is empty at P,.

Lemma 5.2: A connected diagram B such that the
I% of Lemma 2.1 is empty has either &, = J; for all i
or § = F, for all i.

Proof: No bubble can be directly connected to a
line of an I; corresponding to an &, = J;, and also to a
line of an I; corresponding to an §; = &,. For any
initial bubble directly connected to a line of /; cannot
be directly connected to any internal line not in I, by
virtue of the definition of 7;. Similarly,any final bubble
directly connected to a line of /; cannot be directly
connected to any internal line not in J;. Thus, since
I; N I, is empty, neither an initial nor a final bubble
can be directly connected both to a line of Z; and to a
line of I;.

Let C; be the set of bubbles of B directly connected
to any line of any I; corresponding to an §; = J,.
And let C, be the set of bubbles of B directly connected
to any line of any /; corresponding to an §; = &,.
According to the above result, the sets C; and C; are
disjoint. If /% is empty, then every bubble of B must be
in either C; or C;. And moreover no line of B can
connect a bubble of C; to a bubble of C;. Since B
is connected, it follows that either C; or C, must be
empty.

Lemma 5.3: If the I® of Lemma 5.1 is empty, then
all the b, of Bin Lemma 5.1 must be one and the same
bubble b = &',

Proof: It was shown at the end of Lemma 5.1 that
b, cannot be directly connected to &;. The same
argument show that b, must be directly connected to
the other one of the two sets 5, or J;.

Consider, in view of Lemma 5.2, the case in which
all §; = F,. Then each b, is an initial bubble directly
connected to J,. If b, is directly connected also to
either J; or I;, then b, = b;, for the removal of no
other bubble could then disconnect either J; or ¥,
from J,. But b, must be directly connected to some J,
or I; with j s i for B to be connected: if b; were
directly connected to no J; or I; with j 7 i, then the
part of B connected to &, U J, could not be connected
to the rest of B, since I¥ is empty.

By this argument, b; must in fact be directly
connected to either Z; or J; for every j. For if it were

HENRY STAPP

directly connected to one of these two sets only for a
proper subset J of the j’s, then the replacement of b;
to given back B could not reconnect the part of B
connected to the F; U J; for j in J to the rest of B.
Thus, either 7; or J; is directly connected to b; for
every j and one has b, = b; for every j. The case in
which all §; = J, is essentially the same. This completes
the proof.

According to the above lemmas and discussion, the
unitarity equation (for the larger process) at P, has
only two kinds of terms that will contribute, when
continued to P, to the residue of the product of all the
poles. The first is the kind in which all §; = &, and
the second is the kind in which all §, = J,. The sums
of the terms of these two kinds are represented by the
two diagrams of Fig. 7.

The sums of terms of the first and second kinds will
be denoted by A+ and A~, respectively. The functions
A* and A~ will be continued from P, to points P+
and P, respectively, by detouring around singularities
of the terms of these functions in accordance with the
basic ie rules for the various functions MZ(K) con-
stituting these terms. Near the points P*, the pole
terms, indicated in Fig. 8, become dominant.

Figure 8 can be considered to represent the residue
of the product of the poles at P%; then the plus and
minus lines represent the factors +iG,(v,). In particular

the residues have the forms
rt = MIK)[1 [£iG(v)F(K)), (5.1

where the F*(K;) are the functions represented by the

‘ — +
— +
+ —
- l +
— +
Cpb Cp
First kind Second kind
At A"

Fic. 7. Diagrams representing the sums of terms of the first and
second kind. In this figure r, the number of outer bubbles, is 4. The
small boxes represent the sums of sets of bubbles of the indicated
sign connected to, and only to, the indicated set &, . The large
rectangle consists of the sum of all sets of bubbles of the indicated
sign such that the overall diagram is connected, and such that the
removal of some single bubble 4’ of this rectangle disconnects each
set ;U J; from every other one. Only connected diagrams are
included because we consider here only the connected part of the
unitarity equation, which is itself a valid equation, since the dis-
connected parts themselves give valid equations, by virtue of
postulates E2 and E3.
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FiG. 8. Diagrams representing the dominant pole contributions
near P*. The multipole contributions come from insertion of the
pole contributions into the key bubble 5" of one of the large rec-
tangles. The subscripts 0 denote connected parts, and also the
possible limitations in the set of diagrams arising from the fact that
the terms occurring in A< are those present at P,.

outer boxes of the right- and left-hand diagrams of
Fig. 8, and M*(K) represent the original M, (K'; K")
and its conjugate M} (K"*; K'*).

The unitarity equation at Pyis AT + A= + A° =0,
where A° is the sum of the terms of the unitarity
equation appearing in neither A* nor 4~. One can
think that A+ is continued from Pt to P,; at P, one
adds the function A° and obtains, according to
unitarity, the result —A~, and the function —A~ is
then continued to P~. One has in this way a path of
continuation leading from P+ to Py to P—, but thereisa
“jump” across a certain cut at P,. The discontinuity
across this cut at Py is A4°

Following the method of Ref. 8, we now attempt to
shift (distort) this path of continuation P+PyP~ to a
new path P+P,P- that lies completely in the manifold
S; = p? for all i. This will be done by constructing a
set of manifolds S; = a2 and gradually increasing the
a; from zero to u?. The original path P*P P~ touches
S; = 0 (all i) at P,. As one increases the a2, the part
of the path in S; < a? is shifted into the manifold
S; = a?, while the part of the original path P*P,P~ in
S; 2 a? is left as originally. The original path P*P,P—
then defines the end points of the part of the path
lying at constant a;.

In this distortion of the path, there is the jump
originally at P, to consider. If the singularities of the
function A, are confined, locally, to a finite number of
singularity manifolds, then A, can be continued to a
(continually shifting) point on the shifting path. Then
one simply adds at this point the jump defined by the
continued function 4,. When one arrives finally at
the situation where all o> = u? and considers the
residue of the product of poles, this jump will not
contribute, since A°, by construction, is the set of
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terms not having all the requisite poles. The pole
assumption P, is now considered extended to non-
physical points, as will be discussed momentarily.?

In the process of distortion, various singularities
may be met by the shifting path. One can perhaps
distort the path away from them. Alternatively, one
can jump across the cut trailing such a singularity s
by adding the discontinuity across the cut, just as one
did at P,. If the singularities of this discontinuity
function are confined to a finite number of singularity
manifolds, then the function can be continued to a
(continually shifting) point P, on the shifting path.
Then in the analytic continuation from P* to P-
along the shifting path one simply adds at the point
P, this discontinuity function. The contribution from
such a discontinuity will not affect the residue at
a? = u?, unless the discontinuity has all the required
poles.

To discuss which singularities have cuts having
discontinuities having the requisite poles some
definitions will be introduced.

Definition 5.3: D' < D is a Landau diagram D’ that
can be constructed by replacing some of the vertices
V, of D by connected Landau diagrams D?.

Remark 5.1: 1t is easily confirmed that if D’ is a
D’ < D, then D is a contraction D > D’ of D’ and
conversely (see Def. 3.3).

Definition 5.4: D, > < D is a Landau diagram D,
that is a contraction Dy @ D’ of some Landau
diagram D' < D. D supports D, means D; is a
D, >c< D.

Lemma 5.4: A Landau diagram D supports a pole
diagram D, only if D has a key vertex ¥, such that
every path in D connecting a line in the set of external
lines v defined by D, to a line in the conjugate set »’
passes through V,. Such a vertex ¥V, is called a key
vertex of D (relative to D).

Proof: The proof is essentially identical to the
proof of Lemma 4.1.

25 The path of continuation from P+ to P, to P~ is really a collec-
tion of paths, one for each term in 4=. The shifting of these paths
into the mass shell is to be done in such a way that they all pass
through a common point Py(a;), at which A4, is added. This require-
ment may entail that some of the paths have to jump across certain
cuts, as is discussed in the following paragraph. So long as only a
finite number of singularity manifolds are relevant, the required
distortions and continuations are possible. Natural boundariesare
considered to be infinite collections of singularity manifolds and are
assumed to give no contributions to the residue if none of the
constituent manifolds do. The set of points where the manifold
property fails is very thin and the paths can be moved by them
without difficulty.
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Definition 5.5: The pole assumption P, is the
assumption that the discontinuity across the cut
connected to a singularity surface AG of a function
MB(K) represented by a connected bubble diagram B
has no pole [or worse] singularity at AG[D,] unless
the surface AG is a surface AC[D] such that D < B
supports the pole diagram D, [or possibly some other
pole diagram D! with A[D,] = A[D]]]. In this
sense, all pole singularities at M[D,] are associated
with the pole diagram D,,.

Remark 5.2: Pole assumption P, is similar to pole
assumption Py. It is more general in that it is not
restricted to physical points §(K). [The functions
MB(K) and the sets A[D] are, of course, now
analytically extended to include points not in §(X).]
Aside from this difference, the assumptions P, and P,
would be very similar if the discontinuity across a
surface AG[D] were given by a Cutkosky rule. This
would make the discontinuity function essentially a
bubble diagram function MZ'(K) represented by a
bubble diagram B’ obtained by replacing each vertex
of D < B by an appropriate bubble. Then pole
assumption P,, generalized to nonphysical points,
would say that the discontinuity function has no pole
(or worse) singularity unless D < B supports D,,.
By no pole (or worse) singularity we mean, here, no
singularity that affects the residue of the pole.

The quantity of interest to us is the residue of the
product over i of the poles at S; = u?. The only
singularities having discontinuities contributing to
this residue are, according to pole assumption P,,
those associated with diagrams D supporting each of
the corresponding pole diagrams D:. According to
Lemma 5.4, a Landau diagram D can support a
pole diagram D? only if it contains a corresponding
key vertex V. Thus the earlier arguments now show
that A4, will not contribute to the residue at either
physical or nonphysical points.

The contributions to 4+ and 4~ are represented by
bubble diagrams B each having only one key bubble 5"
If D = B supports Di, then the key vertex V} of D
must be a vertex of the diagram DY replacing &’
in the construction of D from B; the removal of a
vertex from the D? of a nonkey bubble cannot effect
the required separation, since the removal of the
entire bubble does not. Thus, for a B representing
a term in A+ or 4, which we write as B € A%, any
key vertex of any D < B € A* must be a vertex of the
diagram DY replacing b’ in the construction of D
from B. It then follows that any D < B e A+ con-
taining all the required key vertices ¥} can be con-
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structed by replacing the bubbles in one of the terms
indicated in Fig. 8 by Landau diagrams D? and then
contracting certain lines. At points §; < u? (all i),
all the lines L;, explicitly shown in Fig. 8, must be
contracted to points, since the corresponding mass
constraints are not satisfied at these points. The
required key vertices V' are then just these contracted
lines L;.

The Landau diagrams D associated with the
singularities having all the required poles have,
according to the above arguments, a very special
structure. They consist of n + 1 “independent”
parts connected only at key vertices. For each positive
i < n there is one “outer’-independent part having
the external lines 5, U J; and precisely one of the n
key vertices. For / = 0 there is the one inner part,
which has no external lines but which has all n key
vertices. These n 4+ 1 parts are independent in the
sense used in Sec. 1: they have independent dilation
parameters and the Feynman loops can be confined
to individual independent parts. Because of this, the
Landau surfaces are just the Landau surfaces for these
independent parts. That is, the singularity surface
AG[D] is just a sum of singularity surfaces AG[D,],
where each surface M[D,] is a surface in the variables
associated with just one of the n + 1 independent
parts. As a consequence, the path of continuation at
fixed S, = a? can be considered to be a product of
paths P,(a,), one in the variables associated with each
of the n 4 1 independent parts. For the outer parts
there are mass constraints on each of the external
lines, and there is one additional “mass’ constraint
S; = a? associated with the vertex V. For the inner
part there is a “‘mass” constraint S; = a? associated
with each vertex V7. As the a; increase, the motion of
the singularity surfaces AG[D;] can be viewed as the
motion of the Landau singularity surfaces for the
individual parts under a continuation in the *“masses”
a;. These “masses” a; are, of course, not physical-
particle masses, but rather variables of the larger
process.

Consider now P+(a;)Py(a;)P~(a;), the part of the
shifting path of continuation lying in the surfaces
S; =a?. At g, =0 the two end points P+(a;) and
P~(a,) of this part of the path coincide with the point
P,. Then, as the a; increase, the points P*(a,) start
moving along paths determined by the original paths
P P+ and P,P-. These original paths lie in the physical
region of the larger process and their detours around
the physical region singularities are specified by the
basic ie rules for functions MZ(K).

Apart from these ie detours, the two paths
P Pt and P,P~ will be taken to be identical. Then
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P+(a;)Py(a,)P~(a;) becomes a closed loop, except for
the small ie gap between the two endpoints P+(a,) and
P—(a,). Thus, the only singularities that can get inside
this loop are either physical-region singularities that
have, for some value of the a,, entered through this
gap, or singularities that have emerged from the cuts
trailing physical-region singularities that have entered
through the gap.

One follows the motion of these singularities by a
continuation in the “masses” a;. Assuming, tempo-
rarily, that the paths can be kept away from the
various singularities whose discontinuities contribute
to the residue, one arrives finally at a, =~ u, (all i)
and considers the residue of the product over all i
of the poles at S; = u;. At the points P+ and P~ one
has the residues r+ and r— given in Eq. (5.1) and
indicated in Fig. 8. By construction, continuation
along the path P*P P~ takes r+ to —r—.

As just discussed, PTP P~ is effectively a product of
paths P;, with one path P; in the variables associated
with each factor in Eq. (5.1). Each factor in r is,
accordingly, continued along the corresponding path
P;. Under this continuation, r+ goes to r*,

"= My(K) IT iG(v)Fi(K)), (5.2)
which we know to be —r~.

Consider the paths P, corresponding to the outer
sets &, U J,. The path P,P can, as we shall verify
below, be chosen such that it crosses no singularity
in these variables. In this case the outer paths P, can
be shrunk to points, which means that

FY(K,) = F{(K). (5.3)

Moreover, in this case, in which PyP crosses no
singularities in the outer variables, the terms contrib-
uting to the outer factors in Fig. 8 are the same at
Py and P. Hence the subscript zero can be replaced
by the subscript ¢, denoting connected part. Then
unitarity (Fig. 2) gives

F{(K) + Fi(K) = 0. (5.4)
These equations convert the equation r*» = —r— into
MyK) = —M;(K), (5.5)

which is just Hermitian analyticity. The path of
continuation A, which is constructed by the procedure
described above, is called the path of Hermitian
analyticity.

The phases « of the pole-factorization theorem are
incorporated into the functions F%(K). That the
phases of the various contributions to (5.4) are then
such as to ensure its validity, by virtue of unitarity,
follows from the fact that the various contributions to
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unitarity associated with different connected struc-
tures, hence different conservation-law 6 functions,
must satisfy separately the unitarity equations, by
virtue of postulates E2 and E3. The argument is
similar to the one given in conjunction with these
phases in the proof of the pole-factorization theorem,
and need not be given again.

Equation (5.3) is valid, provided P,P is chosen 50 as
to cross no singularities in variables associated with
the outer processes. This can be achieved, for instance,
by taking the outer processes to be simple two-
particle scattering processes, and holding fixed, in the
continuation from P, to P, the total energies E; of
these outer processes. The “masses” a; are varied by
varying the momenta of the particles of the outer
processes. The only possible Landau singularities in
the variables associated with these outer two-particle
processes are normal-threshold singularities at con-
stant E;. This follows from a simple enumeration of
possible physical region Landau diagrams for a two-
particle process. These singularities at constant E;
will not be crossed because the E; are held fixed (at
values not at a normal threshold).

When the path P*P,P—, which lies at physical
points of the larger process, is shifted to P+P P,
which lies at S; = u?, the values of (at least some of)
the momentum vectors g, associated with lines L,
must become complex (at some points on the new
path). This is because the part of the path associated
with the variables of the inner process is forced to pass
through the region below the physical threshold of
the inner process, and such regions cannot be realized
with real ¢,. These complex values of the ¢; can and
will be obtained by performing appropriate complex
Lorentz transformations on the corresponding outer
parts; that is, the complexification of ¢, will be
obtained by a complex Lorentz transformation on all
the vectors of the ith outer part. Since the singularity
structure is not altered by a (real or complex) Lorentz
transformation, the fact that ¢, is complex will not
reflect itself in the part of the path associated with the
variables of the outer process; one can consider part
of the path associated with the outer parts to lie at
real values of the energy-momentum vectors, as far as
the singularities in these parts themselves allow this.

In the above discussion it was assumed that the
paths of continuation can be distorted so as to stay
away from all singularity surfaces that contribute to the
multipole residue. That this is possible follows in
most cases from dimensional considerations: A one-
dimensional curve is generally too “thin” to get
trapped by a finite set of singularity surfaces. For
instance, we know that contours of integration of
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real dimension n in a space of complex dimension n
can get trapped at a point to give a singularity of an
integral. But then for n > 1, a one-dimensional curve
will in general not be trapped: it can slide away from
the usual pinch configuration in #» — 1 directions.

One can confirm this in a simple example: Consider
the surfaces z; = 0, z; + o = z3 and the curve x; =
—€, X =0, yy =17, y, =7, where « > € > 0. The
curve intersects the real plane at a point lying in the
region R of the real plane bounded by the restriction
to real points of the two surfaces. As « approaches
zero, this region R shrinks to a point. But the curve
can be moved away from the pinch, by shifting it,
for example, to the curve x; = —e + g(r — 2),
Xp =0, yy =7, y =7 — 2, where g(r) is zero for
|7| > 1 and greater than € near + = 0.

This dimensional argument does not cover all
cases, however. For example, a curve might get
trapped between two surfaces that reduce to a single
surface at a pinch configuration, for then the situation
is essentially one-dimensional. Though such possi-
bilities can probably be ruled out, we do not pursue
this tack, for in any case the curve might get pulled into
an unphysical sheet by some singularity surface. In
order to avoid this, the path of continuation will be
taken to jump across the cuts trailing certain singu-
larities, rather than detouring around them. In
particular, if a singularity moves across the path of
continuation then one can define the discontinuity
function in the situation before the singularity leaves
the physical sheet or is pinched against another
singularity. The path of continuation can then be
taken to jump across the cut, by adding the dis-
continuity function at the cut. If these cuts are part
of the boundary of the physical sheet, then the path of
continuation will remain always on the physical sheet.
The definition of the physical sheet given in Refs. 1
and 12 was in terms of essentially this same procedure
of continuation in external “masses,” and was such
that the physical point and the Hermitian conjugate
point are necessarily on the boundary of the physical
sheet.

6. A CONNECTION BETWEEN PATHS OF
CROSSING AND HERMITIAN ANALYTICITY

A derivation of the crossing property of scattering
functions is given in Ref. 17, and it will not be
repeated here. This section gives an extension of that
argument that leads to an important connection
between the paths connecting crossed reaction and
Hermitian conjugate points. This connection will
play a key role in the proof of the normal connection
between spin and statistics given in the next section.
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The basic idea in the S-matrix derivation of crossing
properties is similar to the one used in the above
derivation of Hermitian analyticity: One considers a
“larger process” having pole singularities- with
residues containing the scattering functions of interest
as factors. In the study of crossing, the larger process
is selected so that its physical region, which is a con-
nected set, intersects the “pole manifold” S, = u2 in
two different disjoint regions, with these two regions
corresponding to the two different signs of the energy
part of the vector k, whose square is S, . Let K and K
be points of §, = u? lying in these two different
regions. The corresponding residues are

I‘(K) = iaMc(Kv)Gp(Dp)Mc(Kv’)
r( K) = i&Mc( Kv)Gp(ﬁp)Mc( Kv’)’

respectively, by virtue of formula (4.8).

The sets K, and K, both refer to the same subset v
of the external particles of the larger reaction, and the
sets K, and K, both refer to the same complementary
subset »" of the particles of the larger reaction. The
additional particle referred to by both X, and X,
and associated with the pole at K, is denoted by p.
The additional particle referred to by both K, and K.,
and associated with the pole at K, is denoted by p.
Since the poles at X and K lie on disjoint parts of the
manifold S, = u2, the two particles p and j need not
be identical, although their masses are equal. Indeed,
the emergy conservation-law requirement demands
that the particles p and j have the opposite initial-final
status and be therefore particles carrying opposite
units of all additive quantum numbers. The particles
p and p are called conjugate particles or relative
antiparticles. Use is made in this argument of the
converse pole-factorization theorem, which asserts,
under the same assumptions, that if there is a pole at
S, = p? in the physical region, then there must be a
corresponding physical particle contributing to uni-
tarity summations; if there were no such particle, then
the J-function contribution needed for the pole would
be absent.

Let C° be a path from X to K that runs through the
physical region of the larger process, passing around
singularities in accordance with physical-region ie
rules. Following the procedure of Ref. 8, we distort
(if possible) this path C°into a path C between K and
Rlying in the mass shell S, = 2. The continuation of
r(K) from K to K along path Cis designated by r(K°).
By virtue of the definition of C we have

r(K°) = rn(K),

(6.1)

and
(6.2)

(6.3)
or equivalently,

l“Mc(Kg) Gp(U;)Mc(KS') = I&Mc( Kv)Gp(ﬁy)Mc( Kv) (604)
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In the distortion of the original path C° into the
path C one must, as in the case of Hermitian analyt-
icity, avoid singularities having discontinuities with
nonzero residue at S, = u2. The necessary distortions
are examined by using an effective continuation in the
mass of the pole particle. That is, the various paths of
continuation intermediate between C° and C are
divided into three segments with the middle segment
at constant S, = a2. The path C° is carried to C by
increasing a,, from zero to u, . The distortions required
of the middle segment are those needed to avoid those
Landau singularity surfaces of the larger process that
become Landau singularity surfaces of one of the two
subreactions associated with the residue when a,
reaches u,. The discontinuities across the cuts
associated with the remaining singularities will not
contribute to the residue, by virtue of pole assump-
tion P,.

The two endpoints of the middle segment lie on the
portions of the original path C° leading from the
zero point to K and K, respectively. As a,, increases,
these end points detour around any encountered
singularities in the manner specified by the physical
region ie rules.

In the procedure just sketched, the pole-factoriza-
tion property was applied to just one particle of some
original reaction of interest; the other particles were
taken to be particles of the larger reaction. The
crossing paths associated with these other particles
can be constructed by applying this same procedure to
each of these particles separately. However, to
standardize the construction and obtain a connection
to paths of Hermitian analyticity we shall apply the
pole-factorization property simultaneously to all of
the particles of the original reaction of interest. That s,
the larger process will be chosen to be one having a
pole singularity for each particle of this original
reaction, so that the scattering function for this
reaction occurs as a factor in the residue of the
product of all these poles, much as in the case of the
derivation of Hermitian analyticity.

Just as in the preceding case of Hermitian analyticity,
the continuation in the a, now starts from a point
where all the a,, and also all their associated k,,, are
zero. There are paths in the physical region of the
larger process leading from this starting point to the
regions associated with each of the » different crossed
reactions associated with original reaction. Each of
these n paths passes around any encountered singu-
larities in accordance with the physical region ie rules.
If C? is a path in the physical region of the larger
process leading from the starting point zero to the
point K; associated with the ith one of the crossed
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reaction, then C¢ = C? — C¢is a path in the physical
region of the larger process leading from K; to K;.
(Sums of paths are read from right to left.) The result
of distorting C?, into the mass shell a, = u, (all p)
in such a way as to avoid singularities that contribute
to the residue of the product of the poles is denoted by
C;; . Since

Cii + Ch = Cii, (6.5)
and since the distortions are such as to avoid the
relevant singularity surfaces, we have also

Ci + Cijp~ Cy, (6.6)

where the ~ sign in Eq. (6.6) means equivalence with
respect to continuation of the residue r(K) of the
product of poles. Equation (6.6) expresses the compat-
ibility of the various crossing paths C that connect
the various crossed reaction regions.

As discussed in the preceding section, and also in
Ref. 17, the pole assumption P, implies that the
singularity surfaces that have cuts having discontinu-
ities contributing to the residue are just the Landau
surfaces corresponding to the individual scattering
functions of the residue, but with the external mass
4, shifted to a,. (Only the Landau surfaces are
extended off the mass shell, not the M functions.)
Because of this special character of the relevant
singularity surfaces the parts of the paths of continua-
tion at constant a, can be considered to be products of
paths, with one factor for each process referred to by
the residue. The distortion of each individual path is
then followed by following the motion of the Landau
surfaces corresponding to the appropriate process, as
the a,, increase from zero to u,. Only those Landau
surfaces need be avoided that are not forced to be
nonsingular by the positive-o requirement on the
Landau singularities entering the physical region of
the larger process.

The parts of the paths C;;, C%, and C? referring to
the inner process will be represented by the corre-
sponding lower-case quantities. Then the part of
(6.6) referring to the inner process reads

Cij T Cipe = Ce

(6.6")
where ~ means equivalence with respect to analytic
continuation of any function whose singularities are
confined to those Landau surfaces of the inner
process that are restrictions to a, = u,, of the surfaces
avoided in the distortions of the c;; into the mass shell.
Equation (6.6") is certainly valid if in these distortions
one retains the original structure of the paths wherein
a single central point is connected to each of the
various crossed reaction points. If it is possible to
distort all the paths c; into the mass shell, so that the
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relevant singularities are avoided, then this structure
can certainly be retained. The case in which it is not
possible to distort the paths so as to avoid all the
relevant singularities will be discussed later.

For each path c? there is a complex conjugate-path
7 that coincides with c¢ except that it detours around
the physical region singularities in accordance with
the ie rules associated with the conjugate function.
According to the previous section, it is the path
¢ — ¢ that, distorted into the mass shell, gives the
path of Hermitian analyticity 4, that takes the scatter-
ing function M(K,) into —M*(K,). The rules for the
distortion of the path & — ¢ into the mass shell to
give h, are the same as the rules for the distortion of
the path ¢ — ¢¢ into the mass shell to give ¢;;: One
must avoid the points of a larger process that lie on
the formal extension off the mass shell of the Landau
surfaces of the (inner) reaction of interest. However,
one need not avoid those Landau surfaces that are
required to be nonsingular by the positive-a require-
ment on singularities that enter the physical region of
the larger process.

Since the paths ¢? and ¢? leading to the n crossed
reactions and their Hermitian conjugate points all
start from a single point and the rule for distortion
of these paths into the mass shell is a uniform one,
the same set of Landau surfaces being avoided in all
cases (see below), the compatibility requirement
(6.6") carries over also to paths connecting Hermitian
conjugate points. In particular, we obtain relations

such as Fi+ cy= Gy + by, ©.7)

where ¢, is the result of distorting &, = ¢ — ¢j
into the mass shell. Equation (6.7) says (readmg from
right to left) that the path from K to K to its conjugate
point K; is equivalent to the path from K; to its con-
jugate point K; to K,. Here equivalent means equiv-
alent with respect to analytic continuation of a
function having singularities only on Landau surfaces
that are restrictions to mass shell a, = u, of Landau
surfaces associated with the inner process that are
not required to be nonsingular for the larger pro-
cesses by the positive-a requirements. The scattering
function of interest must have its singularities confined
to these surfaces, since it is a factor of the residue of
the larger process, and this factor contains all the
dependence on the variables associated with these
singularities.

Equation (6.7) is certainly valid if in the distortion
into the mass shell one maintains the structure
wherein all the n crossed-reaction points and their
conjugate points are connected to a single central
point. Alternatively, the n crossed-reaction points
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can be connected to one central point, and the n
conjugate points can be connected by conjugate
paths to a conjugate central point that is connected by
a single path to the unconjugate central point. More
generally, Eq. (6.7) is certainly valid so long as no
closed loops are introduced into the set of paths
connecting the various points. Cases where closed
loops are present require some additional discussion,
which is given in Appendix D. However, there is no
real need to introduce closed loops.

Because the Landau structure is invariant under
Hermitian conjugation, the paths ¢;; can be taken to be
the complex conjugates of the paths ¢;;, where ¢ is the
path of crossing for the transposed function. The
relationship of Hermitian conjugateness is maintained
if the two related functions are continued along con-
jugate paths. Thus, from the Hermitian analyticity
relationship

M(K" = —M{(K) = =M{(K)*,  (68)
where M, (K") is the result of continuing M,(K)

along the path h to the conjugate point, and the
superscript T represents transpose, one obtains

M(K™) = —MT(K%*, (6.9)
where M (k") is the result of continuing M, (k) first
along h and then along ¢, and MZ(K%)* is the result
of continuing MZ(K) along its path of crossing ¢,
and then complex-conjugating." The ¢ and ¢ are
conjugate paths. Applying (6.7) to the left-hand side
of (6.9), we obtain our principal result

MK = —M(K)*, (6.10)
which says that the result of continuing M (K) first
along ¢ and then along the path of Hermitian analyt-
icity A associated with the crossed point K glves
minus the complex conjugate of the function M, T(Kc)

Equation (6.10) would follow directly from the

Hermitian analyticity relation at the crossed point

MR = —M7(R)* (6.11)
if we were in possession of the crossing relationships
M,(K) = M(R) and MT(K°) = MT(R). However,
we have so far obtained only the weaker condition
(6.4). Because (6.4) has a product of two M functions,
there is an ambiguity in the relative phase and normal-
ization of M,(K°) and M ,(K), as was stressed by Olive.”
And there are also the extra phase factors « and &
to be considered. These latter depend on the statistics
of the particles and will be discussed in the next
section.

In the discussion of crossing and Hermitian analyt-

icity given so far it was assumed that the various
physical-region paths can actually be distorted into
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the mass shell without cutting across any of the
singularity surfaces having cuts with discontinuities
contributing to the residue. It is conceivable, however,
that these singularities might pinch together in such a
way as to make impossible the distortion into the mass
shell of some of these paths.

Rather than distorting the paths around the various
singularities, we can elect rather to jump across the
associated cuts, by adding the corresponding dis-
continuity functions. This was in fact the procedure
adopted for the various cuts whose discontinuities do
not contribute to the residue. For cuts around which
it is not always possible to detour, the discontinuity
across the cut is defined for values of a, for which
the two sides are still connected, and this function is
then continued to a, = u,.

The discontinuity functions associated with cuts
around which it is possible to detour, within the mass
shell, share with the original function the important
pole-factorization property, since this property can
be continued around these cuts. In particular, if a
singularity under consideration occurs in the variables
associated with the inner reaction, then one can
detour around this cut without changing the functions
in the residue formula that are associated with the
outer processes. One makes use here of the relativistic
invariance property, which allows the momentum-
energy transferred to the outer reactions to be altered
without changing their invariants. Hence the functions
associated with these outer reactions will remain
unchanged under continuation in the inner variables,
except for the alteration of certain polynomials
associated with the expansion of spin states. These
polynomials return to their original values when the
continuation is brought back to the other side of the
cut and hence the outer factors return to their original
values. The jump in the residue function across the
cut is therefore represented by adding a certain
discontinuity function to the factor associated with
the inner process, upon whose variables the singularity
was assumed to depend, the outer factors remaining
unchanged. Moreover the discontinuity function for
the factor associated with the inner reaction is inde-
pendent of the particular larger process being con-
sidered. These properties of the discontinuity function
will be called the pole-factorization property of
discontinuity functions. It is the property whereby the
discontinuity function of the residue across a cut in the
variables associated with a given one of the functions
occurring in the residue is obtained by adding a
discontinuity to that particular one of these functions,
this discontinuity being independent of the particular
larger process under consideration.
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The pole-factorization property of discontinuity
functions is, as we have just said, automatically
satisfied for cuts around which one can detour
without leaving the mass shell. It is also satisfied for
cuts with discontinuities given by a Cutkosky formula,
for then the pole-factorization property of the
discontinuity function is a consequence of the pole-
factorization property of the individual functions
occurring in the Cutkosky formula.

If the pole-factorization property of discontinuity
functions is satisfied for all the cuts across which the
paths of continuation jump, then the discussion of
crossing’ and Hermitian analyticity given above is
essentially unaltered. For then there are certain cuts
across which the paths must jump, but the corre-
sponding discontinuity functions are universal quan-
tities that do not depend upon the particular larger
process from which it is derived. Thus, the dis-
continuities that must be added as a path jumps
across the various cuts will be independent of the
particular end points being connected by this path,
and the compatibility conditions (6.6") and (6.7) still
hold. Furthermore, the property whereby the Her-
mitian conjugateness relation is maintained when the
related functions are continued along conjugate
paths is also undisturbed by the cuts. For in the
defining of the discontinuities on the two conjugate
paths one can use for the larger processes two Hermit-
ian conjugate reactions. Then the Hermitian con-
jugateness property will be valid for the discontinuity
functions calculated at a, < u, and will be carried
into the mass shell by continuation in a, to u,.
Thus these discontinuities will not destroy the Her-
mitian conjugateness property and one still obtains
(6.9) and hence (6.10).

7. CONNECTION BETWEEN SPIN AND
STATISTICS
The residue of the pole at a point K on the manifold
S, = u2 in the physical region of the (larger) process
described by the scattering function M (K) is given
according to Eq. (4.8) as

r(k) = iaMc(Kv)Gﬂ(vp)Mc(Kv’)’ (71)
where G, (v,) is a metric tensor satisfying Eq. (2.24),

G(_vy) = (_l)szé(vp)’ (72)
and « is a phase factor given by Eq. (4.9). This phase
factor is important to our considerations but the
formula (4.9) will not be needed.

At a physical point K lying on the crossed-region
part of the manifold S, = u2, the residue of the
scattering function for this same larger process is

r(R) = iaM (R )G (5,)M (R,). (7.3)
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F1G. 9. Representation of direct and crossed residue formulas in a
special case where the initial and final particles of the larger process
are the same set of particles. The factors ja and /& must be added.
The order of incident lines, reading from top to bottom, will
indicate the order of variables of the functions M(K’; K”) and
M(K/; KII).

The point K has the same set of variables as K, but
the values of the momentum-vector parts have been
shifted. The sets of variables K, and K, each contain,
in addition to certain of the variables of X, a variable
associated with the particle p associated with the pole
at K. Similarly, the sets of variables K, and K, each
contain, in addition to certain of the variables of K, a
variable associated with the particle 7 associated with
the pole at K. Particle j is called the antiparticle of
particle p.

The result of continuing from K along the mass-
shell path of continuation ¢ is represented by placing
the superscript ¢ on the set of arguments K. The path
¢ is constructed so that r(K°) = r(K). This gives

laMc(KS)Gp(U;)Mc(Kﬁ') = i&'Mc(Kv)G:p(ﬁzl)Mc(Kv’)'
(7.4)

Since the point K was assumed to lie on the crossed-
region part of the manifold S, = u2, we have vj =
—#,, which, with the help of Eq. (7.2), gives the
result

(—1)PaM(K3)G,(5,)M (K3
= <iI‘Ic(Kv)G'p(ﬁp)Alc(Kv’) . (7 5)

This factor (—1)?» will be the origin of the normal
connection between spin and statistics. It is also the
origin of the connection between the intrinsic
parities of particles and their conjugate antiparticles, as
was shown earlier.2¢

The relationship between « and  is determined in
certain cases by the statistics of the particles of the
larger process.?”#® Consider in particular the residue
formulas in the special cases indicated in Fig. 9.

The phase factors « and & associated with these
residues can be determined from statistics by a direct
examination of the derivation of the residue formula.
In the key step of the derivation the contributions

26 {, P. Stapp, Phys. Rev. 128, 1863 (1962).

27 It is an earlier version of the following argument that, communi-~
cated to J. R. Taylor and converted by him to Hilbert space form,
served as a key element in the proof of Lu and Olive.

28 J, R. Taylor, J. Math. Phys. 7, 181 (1966).
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Fi1G. 10. The contributions to the unitarity equations of the larger
process that are converted by means of the unitarity equations shown
in Fig. 11 into the residue formulas shown in Fig. 9.

to a unitarity equation represented in Fig. 10 were
converted by means of the unitarity equations
represented in Fig. 11 to the residues represented in
Fig. 9.

The two terms on the left of the equations in Fig. 11
are just the complex-conjugate transposes (Hermitian
conjugates) of each other, according to the conventions
adopted in Eqs. (2.30d) and (2.58). It is with these
phase conventions that the Hermitian analyticity
properties were proved.

4 [} 4 I
B === 3 p -3 3
| }

3 3 -
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Fic. 11. Unitarity equations used to convert the pole contribu-
tions to the unitarity equations of the larger process shown in Fig. 10
into the residue formulas shown in Fig. 9. That the right-hand sides
of these equations correctly cancel against terms of the unitarity
equation not shown in Fig. 10 is shown in the proof of the pole-
factorization theorem.

RHS

Because there are no extra phases on the left side of
the equations represented in Fig. 11, the phases « and
& of the residue functions shown in Fig. 9 must be
precisely the phases of the corresponding contribution
to unitarity shown in Fig. 10. This is a key point.

The phases of the contributions to unitarity shown
in Fig. 10 are determined by the statistics of the
external particles of these diagrams. In particular,
interchange of the pairs of identical particles 4 and 5 in
the first factor of the first diagram of Fig. 10, and the
pairs of identical particles 1, 2, and 3 in the first
factor of the second diagram of Fig. 10, leads to
Fig. 12.

The contributions to unitarity shown in Fig. 12
are just absolute-value-squared contributions, and

S N -

Fic. 12. Result of interchanging some pairs of identical particles in
Fig. 10.
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these must have no phase. More specifically, if the
minus-bubbles in Fig. 12 represent precisely the
complex conjugates of the corresponding plus-bubbles
in this figure, then the phase factors of the terms in
Fig. 12 are unity. This stipulation that the minus-
bubbles be the complex conjugates of the plus-bubbles
we record as

M(K,) = MZ(K) (7.62)
and

M(R,) = M{(R,). (7.6b)

In the passage from Fig. 10 to Fig. 11, no reordering
of the variables of the connected parts is performed;
these functions M (K’; K”) are kept fixed. Only the
orderings of the variables of the larger process on the
left are altered. This interchange induces an over-all
sign in accordance with the statistics of the particles
interchanged.

From the fact that the phase factors in Fig. 12 are
unity, the phase factors in Fig. 11, hence Fig. 9, are
immediately determined from the statistics of the five
external particles. If the number of these particles
obeying abnormal statistics [o; = —(—1)#1] is odd,
then the quotient a/d is

5
— I (=% = —(= 1%,

where the equality (7.7) follows from the fact that the
sum of the spins of the particles participating in a
nonvanishing reaction is even, by virtue of the
covariance condition (2.11). But if a/d is —(—1)¥>,
then (7.5) becomes

—M (K)Gy(5,)M(K) = M(R,)G,(5,)M (K,).
(7.8)

Continuation of the right-hand factors in (7.8) along
the path of Hermitian analyticity % associated with
the crossed point K, converts Eq. (7.8) to

M (KOG (5, )My (KS) = —M(R)G(5,)M*(R,),
(7.9)

where use has been made of Eqgs. (6.10), (6.11), and
(7.6).

The functions M and M* are complex-conjugate
functions and the factor G is the square of a Hermitian
matrix. Thus the right side of Eq. (7.9) is nonpositive
and the left side is nonnegative. Therefore both sides
must be zero, which implies immediately that

M(R,) =0, (7.10)

for this case in which an odd number of the external
particles of the set K,, exclusive of p, are abnormal.
This result was derived for the particular case of an M
function with three initial particles and three final

(7.7
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particles, but the argument holds also for the cases of
more than three. That is, any M, function referring to
a process with three or more initial particles and three
or more final particles is zero if any subset of all but
one of these particles has an odd number of particles
with abnormal statistics. This immediately implies
that all such M functions referring to a set of particles
containing any abnormal particles must vanish, except
possibly for M functions referring to an odd number
of particles all of which are abnormal. This last
possibility is ruled out by unitarity, since the non-
vanishing process would contribute a term to the sum
of positive terms giving the real part of the M function
for a corresponding forward-scattering process, which
must, however, vanish because it involves an even
number of abnormal particles.

The possibility that abnormal particles occur in a
reaction involving only two initial or two final
particles, but in no reactions involving three or more
initial and final particles, conflicts with the pole-
factorization property plus unitarity. (Unitarity
guarantees that the transpose process is nonzero.)
Thus we conclude that the scattering function M, (K)
vanishes if any of the particles referred to by K obey
abnormal statistics: Only particles obeying normal
statistics can react.

8. PHASE FACTOR IN THE CROSSING
RELATIONSHIP

Having established that all particles obey normal
statistics, we obtain, instead of (7.8) and (7.9), the
relationships

Mc(KS)Gn(ﬁp)Mc(K:’) = Mc(Kv)Gp(ﬁp)Mc(Kv’) (81)
and

MKG,5)M(K) = MAR)G,(5)M(R,). (8.2)
From (8.2) it follows that
IM(K3)| = [M(R,)|. (8.3)
That is, the continuation of M,(K,) is equal to M (K,)
up to a possible phase factor.

Equation (8.3) can be written as

M(K3) = M (K )x(K,), (8.4)
where «(K,) is a spin-independent phase factor. [The
spin independence of «(K,) follows immediately from
the covariance conditions (2.11).2%] Insertion of (8.4)
into (7.5) gives

a(Kv)a(Kv') = Q(Kv7 Kv’)’
where Q = (—1)¥»g[a,

All our equations are invariant under a transforma-
tion of the form

M (K) — [exp (Z £ ig,)IM(K),

(8.5)

(8.6)



1582

where ¢, is a real number depending only on the
particle type p. The sum in (8.6) is over the particles
referred to by K, and the 4 sign is plus for final
particles and minus for initial. The numbers ¢, can
be chosen so that for each particle p there is one
particular M function that satisfies, instead of Eq.
(8.4), the more stringent condition

M(K}) = M(R,). (8.7

That is, the phases ¢, can be chosen so that a(K,) = 1,
which implies that for the particular K, associated
with K, in (8.1) one has also «(K,) = 1. If the phases
o and & in (7.5) were such that Q were always unity,
then the above adjustment of phases to give «(K,) = 1
would make a(K,) = 1 for all K,., and the crossing
relationship (8.4) would have no extra phase.

In order to discuss the value of Q, certain stipula-
tions regarding the order of variables must apparently
be made. In field-theoretic models one has a cluster
decomposition law that yields

MK, K;, -+, K3 KYL,KE, -+, K,
= M(K{; KDM(K5; K3) - - MJ(K,,; Kp) + - -+ -
(8.8)

That is, if the variables in M are ordered according to
a particular cluster term, in the manner shown, then
the o, for this particular cluster term is unity.

That this equation should continue to hold in a
pure S-Matrix theory can be argued as follows.? Let
all but one of the sets K and K} be held fixed and let
this one remaining set be denoted by A. Then Eq.
(8.8) will be written in the abbreviated form

M(A) = M(ADIL + - - -, (8.9

where II stands for the product of the remaining
factors on the right. [The M(4) on the left is, of
course, a quite different function from the M,(4)
on the right.]

From our general cluster-decomposition property
we have, instead of Eq. (8.9), the more general
equation

M(A) = a M, + - -+, (8.10)

where « , is the phase factor «,, of (2.30). Let B be a set
of variables labeling an amplitude in the same super-
selection class as the result labeled by 4. We have
then also

M(B) = agM,(B)I + - - -, (8.11)

where all other variables are still fixed as before.
Consider now a superposition C = a4 + bB.

29 J, R. Taylor, Phys. Rev. 42, 1236 (1966).
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That is, C labels the amplitude such that

M,(C) = aM,(A) + bM,(B). (8.12)

According to the general cluster property, one should
have, in analogy to (8.10) and (8.11), also

M(C) = acM (OII + ---. (8.13)

This is actually a slight extension of our postulate E/
of Ref. 12, which, as stated, referred only to ampli-
tudes labeled by sets K, not to their superpositions.
But exactly the same physical principle should apply
to superpositions. This extension of Postulate El,
which we call EI’, gives Eq. (8.13).

We need also a stipulation that

M(C) = aM(A) + bM(B). (8.14)

This requirement would be rather natural if we were
dealing with a Hilbert-space formalism in which the
S matrix were regarded as a unitarity mapping of
free-particle states onto free-particle states, with these
free-particle states regarded as tensor products of
individual single-particle states, and in which the
ordering of variables specifies the ordering of these
states. Of course, since we know that the tensor prod-
ucts of these states in different orders are not all equal,
it is not absolutely clear that Eq. (8.14) must be
satisfied, since the addition of extra states might
affect different states differently. Proofs of spin and
statistics that depend on such extra stipulations are
not completely satisfactory, since it is conceivable
that a theory with abnormal statistics might be possible
if one were to abandon the extra stipulations. This
might be done in such a way as to leave the physical
relationships of superposition, Lorentz invariance,
etc., unaltered.

However, having proved the normal connection
between spin and statistics without recourse to such
stipulations, our objective now is to complete the
specification of the basic formalism of a proposed
S-Matrix theory. The stipulation (8.14) is therefore
now adopted.

The stipulation (8.14) immediately gives the result

(8.15)
as one sees by taking special values ¢ and b satisfying
a:b = —M(B): M,(A4). (8.16)

Then the relevant term on the left side of (8.13)
vanishes, which implies, by virtue of Egs. (8.10),
(8.11), and (8.14), the result (8.15). The phase factor
o4 therefore depends only on the superselection class
of A4, or, more generally, on the superselection classes
of the various sets K] . In that case, however, one can

Xy = &p,
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take the sets K] to be equal to the sets K; , without
altering o, . Since the relative phases of the connected
parts M (K/; K;) and their corresponding no-scatter-
ing parts are fixed to be unity by virtue of EI, and
since the phase of the no-scattering contribution to
MK, K, - K,;K{, Ky, - -+ K}) is unity by virtue
of our original conventions on the no-scattering parts
(which we were free to choose), we find that the
factor ay = ap is also unity, and thus obtain (8.8).

From the fact that the phase factor «, is unity for
the decomposition of the type shown in (8.8) one can
conclude that the factors « and & in Q are independent
of the external variables of the process containing the
pole. In particular, if one writes the M(K,,-) on the
left of (4.10) as

M(va’) = M(K\,;” K;9 K;); K:zl': K'\Iu K;’; > (817)

where K and K! contain the initial and final variables
of K,, and similarly for K., and K, and K| are the
variables associated with the exchanged particles,
then, according to Eq. (8.8), one can say that «, in
(4.10) is unity.

The phase «, in (4.10) is the inverse of the phase
change induced by moving K, through K into the
position where (8.8) is again applicable. But this
phase change is independent of the variables associated
with the external particles associated with K, . Here we
are using the fact that the phase change induced by the
interchange of any two adjacent variables is independ-
ent of the remaining variables of the M function. This
is a consequence of (8.8) and unitarity. For unitarity
ensures that the phase change induced by a reordering
of the various final variables is independent of the
particular initial variables (To see this, consider the
contributions to forward scattering, which is a sum of
absolute values squared. Thus all contributions must
suffer the same phase change under a reordering of the
final external variables.) But then (8.8) insures that the
interchange of two adjacent final variables must
induce a phase change that is independent of all
of the other variables, since one can consider a
decomposition in which these two final variables are
the only two final variables of one of the individual
factors on the right-hand side of Eq. (8.8). This
factor can appear as a contribution to various
reactions.

For the analogous calculation of & one uses Eq.
(8.17) with Kj; in place of K,,.

Again &, = 1, and &, is independent of the external
variables of K.; now one must commute K through
K] to obtain the form where (8.8) is applicable.
But then Q is independent of the external lines of K.,
and one obtains from the special crossing relation
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F1G. 13b. Decomposition of analogous to the one in Fig. 13a, but
with p in place of p.

(8.7) (with the variables ordered as in Figs. 13a and
13b) the general crossing relation

MK, K33 Ky = M(KR,; K}, K,). (8.18)

v

That is, if the phases are adjusted so that (8.18) is
valid for one particular +’, then it will be valid for
every »'.

In terms of the functions M (K) defined in (2.26),
the crossing relation (8.18) becomes

Mc(Ks’) = MD(KV')a (819)

which is just the statement that (—p,,m,, —t,)) is
equivalent to (p,,m,,t;), with the understanding
that the continuation from the original region of
positive (—p,) to the new region of positive p, has
been made along the path of continuation ¢. That is,
for the M (K) functions the division between initial
and final can be drawn arbitrarily: one has a single
universal M function for all the crossed reactions.

The important fact that the sign change under
interchange of adjacent conjugate variables is the same
as the sign change under the interchange of the
corresponding like variables follows immediately from
Eq. (8.8) and the fact that the phase change under
interchange of adjacent variables is independent of the
other variables of M. One can consider Eq. (8.8) for
two different orderings of the sets of variables of the
M function on the left. Then to one of these sets of
variables one adds a conjugate pair and finds that this
pair must commute with all variables. In fact, any set
of variables of zero quantum numbers must commute
with any other variable, if (8.8) is to be consistent with
unitarity.
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APPENDIX A: A FUNDAMENTAL THEOREM
ON ANALYTICITY OF INTEGRALS

Theorem Al: Let F(K) be defined by
F(K) =|f(K;K) l:[1 d(g(K; K) dR, (A1)

where the g, are single-valued real analytic functions
of the sets of real variables K = (k,,-- -, ky) and
R = (ky,---, ky). Suppose, for K in a set S, that
R(K) = {R:g,(K; K) = 0 all j} is a bounded sét over
which dg,/0k; is of maximal rank m < n, and that
f(K; K) is analytic at points (K; K) of {(K; K):K € 8,
R € R(K)}. Then F(K) is analytic at points K of 8.
The analyticity of f(K; K) and F(K) is in the sense of
Def. 2.1 of Sec. 2.

Proof: Let K be a fixed point in 8. Because the rank
of dg,/0k; is maximal, the set R(K) is a real analytic
submanifold.3*-3! That is, for any K in R(K) there is a
real function Kz(X), defined and analytic on Ug(K),
the closure of a bounded open set Uz(K), in the space
of points labeled by the set of local coordinates
X =1{x, ", X,_n}, such that Kp(X) maps Ug(K)
onto an open neighborhood R z(K) of K in the space
R(K). One can, in fact, evidently take the x; to be
linear functions of the k; in such a way that d(x,, g,)/
ok; = 3(X, G)/0R is nonzero at G =0 (all g, = 0)
for X in a sufficiently small Ug(K). This ensures® that
the inverse function Kz(X, G) will be unique and
analytic in both arguments at G = 0 for X in Ug(K).
The function Kz(X) is then Kz(X, 0).

The function Kz(X, G) depends also on K and will
sometimes be written as Kp(X, G; K). It is, in fact,
analytic in K, by virtue of the fact that it is analytic in
G and that G is analytic in K. For one can write

ag = KX p KOG 10
0X 0K 0G 0K
o0k’ 0G oK’
—  —dK +—dK =dRk, (A2
+ 0G 0K + oK (A2)
which gives
oK’ oK' 0G
—_— =, A3
oK 0G 0K (43)

as the well-defined derivative.
Because R(K) is bounded, it is also compact in the
induced topology, in which the neighborhoods in

30 Robert C. Gunning and Hugo Rossi, Analytic Functions of
Several Complex Variables (Prentice-Hall, Inc., Englewood Cliffs,
N.J., 1965) pp. 16-18.

31 B. A. Fuks, Introduction to the Theory of Analytic Functions of
Several Complex Variables (American Mathematical Society,
Providence, R.1., 1963), p. 6 and p. 203.
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R(K) are defined as the intersection of R(K) with
neighborhoods in the imbedding K space. This result
is well known.32

The basic neighborhoods in R(K) will be taken
small enough so that each one is contained with its
closure in one of the R z(K). This is possible because of
the analytic character of Kz(X, G) and its inverse.
In particular, given a point K of R(K), one can find a
sufficiently small neighborhood AGg(K) of G =0
such that R3(X, G) is analytic with an analytic inverse
over Uz(K) ® AGg(K).2® Thus, by taking the basic
neighborhoods in K space small enough so each is
contained with its closure in the image of one of the
Uz(K) ® AGg(K), we ensure that the closure of the
restriction to R(K) of each of these neighborhoods is
in one of the R z(K).

The basic neighborhoods in the space of real points
K can be defined as the open sets bounded by surfaces
at rational constant values of the k,. This provides
also a set of neighborhoods in R(K). For the basic
neighborhoods in R(K) a subset of these will be
chosen. In particular, since for points on R(K) the g;
are analytic functions of the k; with nonzero the
gradients, the basic neighborhoods in R(K) can be
taken small enough so that the gradients of the
surfaces g; = 0 are almost constant over any basic
neighborhood in R(K).3® Then the set of basic
neighborhoods in R(X) is further restricted by the
requirement that none of these neighborhoods be
bounded by a surface corresponding to a certain
constant k; if the gradient to this constant k; surface
is “‘nearly parallel” to any linear combination of the
gradients to the surfaces g, = 0, at any point K of the
neighborhood in question.

[The point here is first that one can certainly find
n — m constant k; coordinate surfaces whose grad-
ients are not ‘“near” the subspace spanned by the
gradients at K to the surfaces g, = 0. For let {V;}
be the orthonormal set of normalized gradients to the
coordinate surfaces lying at constant IE,-, and let
{W,} be an orthonormal set of vectors such that the
first m of them span the space W(K) spanned by the
m gradients Vg, at point K. Suppose m + 1 of the V;
lie “near” the space ‘W(K), in the sense that, with a
suitable ordering of the V;, the quantity

m+l n
2 2 (Vew)=é
i=1 j=m+1

32 N. Dunford and J. Schwartz, Linear Operators (Interscience
Publishers Inc., New York, 1958), Vol. I, p. 17.

33 That this can be achieved is assured by an application of
Theorem 8, p. 8 of Ref. 30. ‘“Almost constant” can mean, for instance,
less (1000n)~1 per cent variation.
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is smaller than unity. Then the sum over the comple-
mentary set in i is

n n
S S (e Wy=n—m—3
i=m+2 j=m+1

<2 SV W)l=n—m—1
it=m+2 j=1

This gives d > 1, contradicting the assumption that
m + 1 of the V, lie near the space W(K). Thus at most
m of the ¥V, can lie near W(K), and one can find a set
of at least n — m vectors ¥, none of which is nearly
parallel to any linear combination of the gradients to
the surfaces g; = 0. (By nearly parallel 'we can mean,
specifically, that the lines make an angle of less than
n~! degrees.) One can choose any one of these vectors
as one of the x;. Working up by induction in m, one
sees that one can complete the set of x; by choosing
from the set of k; those whose gradients are not
nearly parallel to the vectors of W(K). Thus one can
find arbitrarily small neighborhoods of K in R(K)
that are bounded only by manifolds corresponding to
k; whose gradients are not nearly parallel to any
vectors of W(K). And since W(K) depends continu-
ously on K, the condition can be maintained for all
K in sufficiently small neighborhoods.]

By virtue of the compactness of R(K) there is a
finite covering of R(K) by neighborhoods of the type
specified above. Since intersections of finite numbers
of these neighborhoods are also neighborhoods of
this same type, one can find a finite set {R (K)} of
these neighborhoods whose sum is just R(K), apart
from the set of measure zero coming from the bound-
ary points of the various R (X).

By virtue of the conditions imposed on the basic
neighborhoods of R(K), each R (X) is contained in
one of the Rz(K). The inverse image of R ,(K) under
the corresponding Kz(X) will be called U(K). Let
R, (X;K) be the Kz(X,0;K)= Kp(X) that maps
U, (K) onto R (K). Then one can write

FK) =3 L JX KX K) dX

=Y F(K), (A4)
where
JLX; K) = f(R(X; K); K) (AS)
and
ey _ OKAX; K)
JAX; K) = THX.G) (A6)

Some straightforward formal manipulations give,
for the derivative of F,(K) with respect to K, the
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expression
aFa(K) _— (a_f;ia) dX
K U5\ 0K
oh
- J(he) =22 dX, (A7
% aUa(K)f (hse) 0K (AD)
where

hoa(X; K) = kjp(X; K) — ¢4, =0 (A8)
are the equations for the surfaces in X bounding
U,(K). The function k,(X; K) is the component of
K (X; K) associated with the boundary surface S«
of U (K).

The derivative with respect to Kis to be interpreted,
always, as the derivative on any variable upon which
the k; of K depend analytically. In particular, if the
function is defined only over a restricted set, then the
derivative is with respect to any appropriate local
coordinate, in the sense of Def. 2.1. With this under-
standing, the derivative 0f,/0K exists over the closure
of U,(K) by virtue of our original assumption. It is
therefore also uniformly bounded over U K). The
derivative of J, exists in the usual sense, hence also in
the sense of Def. 2.1. It is therefore also uniformly
bounded over U, (K). The set U,(K) is bounded and
hence the first term on the right in (A7) is finite and,
in the sense that it is independent of the phase of the
variation dK, well defined.

The second term on the right-hand side of Eq. (A7)
is also finite and well defined. The function 4y, is
analytic in K in the usual sense, hence also in the sense
of Def. 2.1. For any particular term £ one can trans-
form to a set of variables in which the k; corresponding
to the surface fo is one of the x;. Then the d(hg,) just
eliminates this one of the dx; in dX. The remaining
integral is finite because U,(K), and hence 9U (K),
is of bounded extent. By virtue of the method of
construction, the number of sides § is finite and hence
so is the second term in (A7). The formal derivative
(A7), is therefore finite and well defined.

Since the formal derivative 0F/0K given by Eq.
(A7) is well defined, the function of F(K) is analytic in
K to the extent that the formal expression actually
represents: the limit of AFJAK. For real AK, this is
true. However, for complex X, the meaning of F(K) is
not yet defined.

For complex K near a real K, € 8, one can take
F(K) to be defined by Eq. (A4). The many-variable
version of the Cauchy theorem® then permits the
-TeeRef. 31, p. 264. It is important to note that if the region of
integration ¥ = Ux(K)is bounded in part by a portion of a manifold
defined by z;, = ¢y, where jy = jy, then the values of the remaining
z; on the interior of this portion of the boundary can be varied in a
smooth way through a region of analyticity of the integrand without
altering the integral. This is because dZ = dz; A dz, - - A dz,_.

is zero if any dz; is zero, and hence the extra piece of contour gives no
contribution.
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contour for F,(K, + AK) to be taken to consist of a
central part U,(K,) plus a boundary strip running
between 0U,(K,) and 0U (K, + AK). Using this form
for the contour, one obtains Eq. (A7) as the limit of
AFJAK for all complex AK. Thus the function F(K)
defined by Eq. (A4) is analytic at points K in 8.

For real K, the various possible ways of choosing
the local coordinates and the U (K) all lead, via
Eq. (A4), to the same function F(K), by virtue of the
factors J,. Since the extension to complex K via any
one of these choices gives an analytic function, the
extension must be independent of the particular
choice used in Eq. (A4).

Definition: A local coordinate patch in R(K) will
mean the image in R(K), under an analytic one-to-one
mapping K(X), of a bounded open set in the space of
points X = {x;, -, X,_n}. The set X is the set of
local coordinates corresponding to the local coordinate
patch. We further specify that the x; be a subset of the
set of k;. That this is possible follows from arguments
given in Theorem Al

Theorem A2: Let R(K) be the set of real K described
in Theorem Al, and let {K:G(K; K) = 0} be the set of
all complex K satisfying the same conditions, g,(K;
K) = 0 for all j. Suppose R'(K) = {K:G(K; K) = 0}
is the image of R(K) under a mapping K— K’ =
R + iT'(K; K), where T'(R; K)is real and continuous
over R(K)® 8 with continuous (hence uniformly
bounded) first derivatives with respect to the local
coordinates corresponding to some (hence every)
finite covering of R(K) by local coordinate patches.
Suppose R'(K) is close to R(K) in the sense that the
image U.(K) of U,(K) is within the region where
K (X, G) is analytic with analytic inverse, the relevant
minors of dg,/0k; still being nonzero. Suppose
f(R; K) is analytic at points (K; K) of

{(R; K):K€e 8, Ke R'(K)}.

Then F(K), defined by Eq. (A4), but with U (K) in
place of U,(K), is analytic at K in 8, provided R'(K) is
sufficiently close to R(K). [The final condition of
closeness means that for some & > 0 we have, using
the metric in K space, |T(K; K)| < & for all K in
R(K), for any fixed point K of 8. Although this
condition is used in the following proof, it probably is
not necessary for the validity of the theorem. The
explicit definition of F(K) is given by Eq. (A9).]

Outline of Proof. The boundaries of the sets U, (K)
map into surfaces H, in R(K), the surface H, being,
by construction, the intersection of R(K) with a
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portion of the manifold &,, = c,. Here c, is a (real)
rational number and iy means i,. The image of H,
in R'(K) is H,, on which k,, is given by k., = ¢, +
it; (K/H,; K). The symbol K/H, means that K is
considered restricted to H,.

Each of the real functions ¢; (K/H,; k) can, by
virtue of the Weierstrass approximation theorem,
be approximated over H,, for fixed K, to arbitrary
pointwise precision by a real polynomial ¢;(K; K)
in the variables k; of K. Indeed all the ¢, (K/H,; K)
having the same index i can be approximated by one
single polynomial ¢; (K; K). We assume this is done so
that the index iy on #;(K; K) can be interpreted as an
i,. Sometimes, as in Eq. (A7), fo is used in place of y
to identify a boundary surface.

The U,(K) can be selected so that for each point K
of R(K) there is, in R(K), a coordinate patch N(K)
containing K, such that the &, associated with each H,
that intersects N(K) is 2 member of the set of local
coordinates X corresponding to N(K). If the original
U,(K) do not satisfy this condition, then the ¢, can be
slightly shifted so that the condition is satisfied.
[Suppose, for example, that a surface h(X)=
k. (X) — ¢, = 0 intersects the intersection I, of a set
of coordinate surfaces x; = 0, where j runs over the
set {1,-+, a <n— m}. And suppose 0h [0x; = 0,
forj=a+1,--+,n— m, at some point of I, N
{h, = 0}. This is a typical case where the gradient of
h, is not independent of the gradients of some subset
of the x; and hence /1, cannot be taken as one of the x; .
There may be a connected set of points in I, for which
this condition on the gradient remains satisfied, but
all points of this set must lie at k,, = ¢,. Thus a slight
shift of ¢, will move this entire set of points on
{h, = 0} for which the gradient condition is satisfied
out of the set J,. A finite number of applications of
this argument will give the required result.]

By the Heine-Borel covering theorem, the compact
R(K) can be covered by a finite number of coordinate
patches of the type specified above. These real
neighborhoods N(K) in R(K) can be extended to
complex neighborhoods N*(K) in {K:G(K; K) = 0}
such that the mapping K(X) associated with N(K)
remains analytic and single-valued over N *(K). We
shall require that, for some finite covering of R(K)
by these local coordinate patches N(K), the image in
R’(K) of each N(K) lies in N*(K). This requirement
certainly can be satisfied if R'(K) lies sufficiently close
to R(K). This condition is far from necessary, how-
ever.

35 See, e.g., R. Courant, Methods of Mathematical Physics (New
York University, Institute for Mathematics and Mechanics, New
York, 1950), p. 47.
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The complexification of the neighborhoods N(K)
leads to a complexification x;—z; of the corre-
sponding local coordinates. Because the z; are
independent variables over the corresponding N*(K),
the requirement just imposed ensures that the values
of the ki, on H| are independent variables. In partic-
ular, the k;.y associated with the various Hy’ can be
simultaneously shifted by sufficiently small amounts
without moving off the surface {K:G(K; K) = 0}.

Because the k;, on H are independent variables, in
this sense, a surface R"(K) < {K:G(K; K) = 0} can
be defined by the mapping K — K" = K + iT"(K; K),
where the i, component of T"(K/H,; K) is a polyno-
mial ?] (K/ ; K) of the type discussed earlier, and
where all components of T"(R; K) are, for fixed K,
continuous in K over R(K) with continuous (hence
uniformly bounded) first derivatives in the local
coordinates of any fixed finite covering of R(X).

The surface R"(K) can be made to lie arbitrarily
close to R'(K). Thus, by virtue of the many-variable
Cauchy theorem,3 the contour can be taken to run
over R'(K) instead of R'(K), without changing the
value of the integral.

The construction described above is carried out for
the original real K = K, in 8. For nearby real K,
the boundaries of the real U, (K) are taken to be defined
by the same equations /1, = 0 that are used at K = Kj,.
The boundaries of the images U, (K) of U,(K), under
K — K", are defined by taking the #/(K; K) to be
independent of K. This can be done because they are
independent variables, in the sense discussed above.

The function F(K) is defined by Eq. (A4), but with
‘the X' in K, (X; K) replaced by Z,(X; K), which is the
function that maps U,(K) onto U, (K). In particular,

we have
F.(K) J‘ 0K (Z"; K)
0Z

- f FAZUX; K): K)
U K)

 ORAZUX: K); K) 02"
oz ax

fAZ"; K) = fIR(Z"; K); K).

As the real K. varies from its original value K,
certain of the boundaries of the U,(X) may move.
The integral F,(K) can be considered to be composed
of a central part lying over the fixed U (K,) plus a
boundary part that is the strip connecting 0U (K,) to
0U,(K). By virtue of Cauchy’s theorem,3¢ applied to
the first form in Eq. (A9), the exact shape of the
interior of the contour U, (K) is not important; it can
be slightly shifted without changing F,(X).

f«(Z" K) dz’

224X, (A9)

where
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Because of this freedom in the choice of contour,
the location of central part of the contour, lying over
U(K,), can be prescribed by taking the function
Z.(X; K) to be independent of K. This function is then
analytic in K and, consequently, so is the part of the
integrand in Eq. (A9) lying over U(K,). Thus, this
central contribution to F,(K), which corresponds
to the first term in Eq. (A7), is analytic in K.

For the calculation of the contribution to F,(K)
coming from the boundary strip near H,, = H, we
choose a set of local coordinates X, which has an
element x,, that is k,,. (We may need several such
coordinate systems to cover H,, but a finite number
will certainly suffice.) In this coordinate system y the
equation for H is

2}, = ki, = ¢, + if;(R(X,; K)/H,)

= Zir(Xy/Hy; K),
which, by the theorem on compositions of analytic
functions,® is analytic in K. The meaning of X/H, is
evident.
The other edge of this boundary strip lies on
0U"(K,), hence on the image in y space of

Z (X, [H,(Ky); Ky),
which is

Zy(X,/H,; K)

= Zy[Ka(Z:{Xa[Ky(Xy/Hy’ KO)]; KO}; K)]
The i, component of this equation is
A”(Xy/Hy: K) = klﬂa(Z”{X [Ky(X /Hyﬁ KO)] KO} K)s

where k,;,(Z,; K) is the Bo =y component of the
function K,(Z;; K). This function 2/(X,/H; K) is
analytic in K, and hence so is

Azj(X,[H,; K) = z/(X,/H,; K) — £,(X,/H,; K).

Let ZJ represent the set of coordinates other than
= k” in the set Z7, and let X, be defined similarly.
The value of Z7 on H has not been specified so far.
The point is that the contour in Z] can be slightly
shifted, keeping z;,(X,/H,; K) fixed, "without altering
the value of F, (K) Thls is because the contribution to
F,(K) from a piece of the contour confined to HY
vanishes, because of the vanishing of dz, . This result
is familiar in simple cases, where the shlfting of the
contour in Z, space is justified by the Cauchy theorem
in Z, space.
Since the exact value of ZJ(X,/H,; K)is not import-
ant, we shall leave it unspemﬁed except to require
that the surface R"(K) be smooth (i.e., continuous

3¢ See, e.g., Ref. 30, Theorem 5, p. 6.
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with continuous first derivatives with respect to the
variables of some local coordinate system).

The contribution to F,(K) from the boundary strip
near H; is then given (up to a sign perhaps) by

aKv(Z’v’(Xy/Hy; Ko); Ko)
oz

f FZUXIH,; Ko); Ko)
H,

x az,yl(xv/Hy; K,)
ox,

plus higher-order terms in AK. The dependence on K
is through the analytic function Azj (X,/H,; K). Thus
the limit Az} /AK will be well defined (i.e., independent
of the phase of AK). The analyticity of £ (K) then
follows by the same arguments that were used in
Theorem Al.

x Azj(X,/H,; K)d X,

APPENDIX B: THE PHASE FACTOR IN
THE POLE-FACTORIZATION THEOREM

The phase factor of some particular contribution
“a” in the fourth term of Fig. 3 is &,,&%,3 ;. Here &,
is the phase a, of the particular partition of the ith
factor that leads to the contribution a. For the first
term of Fig. 6 we have, instead, o, alx,,. If one
considers various contributions ¢ = (a, b, * - *) that
correspond to a fixed set of internal lines of Fig. 3, then
it follows from Postulate E2 that the ratios &,/a,; are
the same for all these contributions. In this particular
application of E2 the “remaining set of variables R”
is just the-single variable p, and it follows from Eq.
(2.30h) that

Thus one can evaluate r = &, &5&,,/0, 05, by
choosing any convenient partitions for the three
factors in Fig. 3.

According to the above result, one can calculate r by
choosing for the three partitions in Fig. 3 just the
first partitions, which give simply the connected parts.
That is, the ratio r can be expressed as

*
— (322%3)B1
= A2 EB
(o102 05) B2
where the a,’s in the numerator and denominator are

the «,’s for the three factors in the functions repre-
sented by the diagrams in Figs. Bl and B2, respectively.

Jrnnn IO

+ b - +

JLILIULD

hrinn

Fic. Bl. A diagram related to the fourth term of Fig. 3. The
shaded strips represent sets of freely moving lines.
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JILLENILL

FiG. B2. A diagram related to the first term in Fig. 6.

If one interchanges the two identical initial particles
of the M function represented by the part of Fig. B2
lying left of the vertical line, one obtains the function
represented by Fig. B3,

This interchange changes the M function by a
factor o,. Thus (a,23ay)ps = 0,(®,25%,); and one
can write

r= (0‘1‘1;“3)131/ %(“1“:“3)133-
Using E3 one finds that («,0} a3)gs is equal to «g,,

where ap, is the «, of the decomposition shown in
Fig. B4.

c 0 d b
I NI

LI p.atnnin 111
e

LUILL BUBREN (BURANS

FiG. B3. Diagram representing functions obtained by inter-
changing the two identical initial particles of the M function rep-
resented by the part of Fig. B2 lying left of the vertical line.

The equality
(aﬂ:“s)}as = OByg

is obtained by writing it in the form
-1 —
Kac%ag%pg = Kpes

which is a special case of Eq. (2.30i). For this special
case n is 2, and the first subsets of @, b, ¢ and d
consist of just p itself.

By virtue of Eq. (2.30d), one has (,0)a,)p; = 1.
The a, = oag, is just the «, of the pole-factorization
theorem.

In the proof of spin and statistics, this result for the
phase of the residue was not used. Rather, it argued

FiG. B4. A diagram with the same connectedness structure as the
diagram in Fig. B3.
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B . O e

FIG. BS. The term in the unitarity equation corresponding to a pole
term.

that the phase must in fact be precisely i times the phase
of the corresponding term in the unitarity equation.
This corresponding term in the unitarity equation is
shown in Fig. BS.

The phase of this term is « = «, o, where a; and o
are the phases «, of the cluster decomposition
equation for the two factors of Fig. BS.

By virtue of Postulates E2 and E3, the over-all
phase that multiplies the fourth term in Fig. 3, when
the «, are taken into account, is just « = aay;
aside from this one over-all phase, the function is
given by the indicated product of M functions, each
of which is defined as if acted alone. The point is that
E2 insures that the relative phases of different contri-
butions associated with any given set of internal lines
are the same as they would be if the parts acted alone.
And E3 ensures that the relative phases of contribu-
tions associated with different sets of internal lines
are just as they would be if the various parts acted
alone.

This over-all phase factor « multiplies the function
represented by the fourth term of Fig. 3. Since the
boxes represent the M functions with the phases they
would have if they acted alone, one may invoke the
equation represented by Fig. 4 to obtain the second
term of Fig. 5, but now with the phase «.

In order that the fifth and six terms of Fig. 3 cancel
it is necessary that over-all phases that multiply them
be equal. This follows from Postulates E2 and E3.
The relevant diagrams are shown in Fig. B6.

c a d [ a d [ b d
il € Wil NNt HUHININ 1 @ T
= =
I I I
a A 8 B
c a d ¢ a d c b d
o= O s, @ hin it @1
-- @ it Wity @ I}
LI LI ~
c ¢ [}

F1G. B6. Diagrams used to show that the phase (a,0f)s = (c200])p.

c b d

=t

c
1t ) It @ 1t

NI IR
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The proof is as follows: By virtue of E2,we have

* *y

(ou0g)s _ (oa23)
* = *

(moa) g (22)p

and
(az)p _ (a%)p
(uo2)p  (002)5

But from Postulate E3, we have

(‘3‘1‘7‘;'= Jo = (“1“:)D-
On the other hand, Eq. (2.30d) gives

(022)g = (eq3)p = 1.

Inserting this into the above equation, one obtains

(0‘1“:)4 — (0‘1“:)}1'

(“1“;)3 (°‘1“:)B .
If one takes @ = d and ¢ = d, then the right-hand side
of this equation is unity, by virtue of Eq. (2.30d).

APPENDIX C

In Ref. 13, M (K) is shown to consist of a sum of
terms M{(K), each of which is a limit to physical
points of a function analytic in a region containing
physical points as boundary points. In particular, we
have

Mi[g] = f Mi(K)p(K) dK

=lim | M{(K + i e A(K))¢(K) dK,
€0
where K is here considered a point in a real vector
space of dimension (3N — 4), and A(K) is a point in
the same space (i.e., local linear coordinates are
introduced). Certain properties of such functions will
now be derived.

Lemma CI: Let D be the space of C” test functions
with support confined to R, the closure of the bounded
open set R’ in the space R, of n real runbers. Let

flo] be a functional of ¢ such that for any ¢ in Dy,

Slpl =lim, [/ + €A dx, (€D

where x and A(x) are elements of R,,, the components
of A(z) are entire functions of z = x + iy, and f(z)
is analytic in the strip

S={zz=x4i€A(x),xeR 0<e< >0}

If ¢(x) in Dy, is, at points x of R', the restriction to R’
of a function ¢(z) analytic and uniformly bounded in

8" ={z:Reze R, |Imz| < p(x)},
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where p(x) is continuous and positive for x in R’, then
flgd=tim [ fCc+ iy + 1€AG)
=0 JR-R
X plx + iy(x)) d(x + iy(x))

[ S+ iGN + O e + 500D,

(&)

where the closure of R" is in R’ and y(x) is any

continuous real function that is zero for x not in R,

and for x in R’ gives a z = x + iy(x) that is in

S N S§’. The set of points x + iy(x) can be considered

a contour C lying over the real points x. Then Eq.
(C2) can be written in the more compact form

fled=tim [ G+ iea@e) d:

# [, o @ a2 (€2)
C(R"
where C(T) is the part of C lying over T.

Proof: By Cauchy’s theorem, generalized to several
variables,3* Eq. (Cl) is equivalent to

flg) =lim [ G+ icA@Iw@dz ()
€0 C

since, for some € > 0 and every fixed 0 < € < €, the
functions are analytic in the region through which the
contour is shifted. The points on the boundary of R,
where the ¢(z) are not analytic, give no contribution
because of the boundedness condition on ¢(z). For
the part C(R”) of C the limit ¢ — 0 can be taken,
since the integrand is analytic, hence continuous,
in e at these points.

Lemma C2: If the conditions of Lemma C1 are
satisfied and if {f(z)| is bounded over the intersection of
S with some neighborhood of R — R’, then

flpl = fcf<z)<p<z> iz. €2

Proof: The boundedness of f(z) and ¢(z) assures that
the contribution from R’ — R” vanishes as R — R’.

Corollary CI: If f[p] and g satisfy the conditions of
Lemma C1 and C2, then f{¢] is finite (noninfinite).

Proof: The right-hand side of Eq. (C2") is finite.
Corollary C2: 1f in place of Eq. (C1) we have
Slg =Jim, [I7*G+ i €a"()
E =[x = i e A7(9)]p(x) dx,
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and if f£(z) and ¢(x) satisfy the conditions of Lemmas
C1 and C2, then we have, in place of Eq. (C2"),
rather

o= rewe iz = e ©)

Proof: The manipulations of the proof of Lemma C2
can be carried through for each term separately.

In the following theorems, x is a single real variable
(i.e., n =1). The set R" will be the real set R’ =
{x:|x| < a}.

Theorem C1: Let f]g] be a functional of ¢ such that
for any ¢ in Dy

flg] = lim, f [f7x + ie) = f(x — ie)lg(x) dx,
where the f* are analytic in the strips
St={z:ReZeR,0< £ Imz < 5 > 0}.

Suppose the |f%(z)| are bounded in S+ N N, where N
is a neighborhood of R — R’. Then the vanishing of
fl¢] for all ¢ in Dy implies that the limits f=(x) exist,
are analytic, and are equal, for all x in R'.

Proof: By virtue of Corollary C2, one has
= rew@d:-| e ©

for any ¢(2) satisfying the conditions of the Lemma
C1, where C* and C~ are certain (compact) contours
from x = —a to x = a that lie just above and below
the real axis for (x| < a. Let y(x) be the function
p(z) = exp [—(a® — z2)7'] and let ¢(z;2") = p(z) X
(z — z')~'. Then define

F&) = r@n
- f e ) dz,
40

where C+ is a contour from a to —a that lies inside S*
and above C* for [x| < a — b; and C~ is a contour
from a to —a that lies inside S~ and below C- for
|x| < a — b. For a > |x| > a — b > 0, the contours
C+ are taken to coincide with —C%, respectively. By
Cauchy’s theorem, F(z') = 2nift(z")p(z’) if 2z’ is
between C*+ and C*, and F(z') = 2mif (z')y(2") if 2’ is
between C~ and C~. By virtue of the vanishing of
Eq. (C5), one also has for z’ in either of these two
regions

F(z') f f (Z)w(Z) dr — J _f (Z)w(Z) dz. (C7)

In view of the analytic1ty and boundedness conditions
on f* and ¢, Eq. (C7) implies that F(z') is a single

(C6)
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analytic function throughout the interior of C* — C~.
This implies that f*(z') and f~(z') are both equal to
F(z')[2miy(z"), and hence are analytic, inside C* —
C-.

Theorem C2: The condition of boundedness on
If£] in the statement of Theorem C1 can be replaced
by the condition that |f%(z)} be bounded in S* N N
by Cexp B|lm z|™™ for some positive values of the
constants C, B, and m.

Proof: In the proof of Theorem C1 one can replace
the function ¢(3) = exp [—(a® — 227} by

exp [—A(a® — %)™

And the curve z(x) can be taken to approach the
endpoints at x = Fa along the lines arg (z &+ a) =
47[4m. Then for points on the contour sufficiently
near x = Fa the function {p(z)| is less than exp
— A" |Im z|=™, where A" = A[sin (z/4m)}™ (2a)™™/2.
If one chooses 4 so that A’ > B, then |fx¢|
is bounded near x = ta. The same argument also
shows that |f+(z)g(z; z')| is bounded for z near +a, if
z' # 4a. But it is the boundedness of these products,
rather than of the |f*| themselves, that is actually
needed both in Lemma C2 and its corollaries and in
the proof of Theorem CI itself. Thus the argument in
that proof carries over immediately to the present case.

Remark CI: Theorems similar to C2 have been
proved by other authors”3 under the more stringent
assumption that f[g] is a distribution. This distri-
bution assumption demands that f{z) be bounded near
Im z = 0 by some negative power of [Im z|.3* It is not
clear that we wish to impose such a strict requirement
on the allowed functions. In fact, from the S-matrix
view point it is natural to allow all functionals f]¢] on
D, that can be expressed as sums of limits of analytic
functions. Theorem C2 is a step in this direction. The
condition, required in this theorem, that f be bounded
by an exponential of an inverse power, while already
very weak, can be much further weakened by replacing
the constant power m by C’exp B’ |{Im z{~™". More-
over, this new m can again be replaced in the same way,
and so on. Thus the bound on f(z) can be made
extremely weak. Whether the boundedness condition
can be removed altogether is still an open question, as
far as I know.

37 H. G. Tillmann, Math. Z. 77, 106 (1961).

38 See R. F. Streater and A. S. Wightman, PCT, Spin, and Statistics
and All That (W. A. Benjamin Inc., New York, 1964), Sec. 2-5.
In both this reference and the preceding one the main interest is the
many-dimensional case.

3% See Ref. 37 or Theorem 2-10 of Ref. 38.
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Theorem C3: If a functional f]g] has a finite value
for all infinitely differentiable functions ¢(x) of com-
pact support R that are restrictions to R of functions
analytic in the interior of R, and if for such ¢ the
functional is given by

S} = lim f [FH(x + i€) — f(x — i)]gp(x) dx, (C8)

where the functions f*(z) are analytic in the strips
St={z:RezeR,0< £ Imz< >0} (C9

and are bounded at points of S* near the boundary
of R by C exp B|{Im z{~™, for some positive values of
constants, C, B,and m, then the functions f*(z) are
unique up to a common additive function that is
analytic at interior points of R.

Proof: This follows from Theorem C2 by taking the
J* of that theorem to be differences of possible func-
tions f* of this theorem. The extra condition in this
theorem that ¢ be analytic at interior points of R’
does not alter the proofs, since only functions having
this property were used.

Remark C2: The particular boundedness condition
used in Theorem C3 can, according to the Remark C1,
be greatly weakened, if the need should arise. Also,
class of ¢ for which Eq. (C8) holds can be much
further restricted, if the need should arise.

APPENDIX D

The mass-shell paths C,;, connecting various
crossed reaction and Hermitian conjugate points,
are constructed by following the distortions of paths
Cy;(a,) as the effective masses a,, increase from zero to
#%. At the start, where all a, = 0, the C;;(a,) all
reduce to a single common point. As the a, increase,
the various end points of the C,;(a,) move along
definite singularity-free paths and the interiors of the
C,;(a,) are distorted so as to avoid a certain set of
Landau surfaces 8.

In this continuation in a,, the various C;;(a,) may
be distorted in such a way that it becomes possible
to find a closed loop lying in the set of C,;. Since no
surfaces of the specified set S cross this loop as it
develops from a single point at a, = 0 to its form at
a, = u>, one can say that, in a certain sense, none
of these surfaces lies “within” the loop. Thus one
might expect that the mass-shell loop should be able
to be shrunk (staying within the mass shell) to a point,
without crossing any of these surfaces. This is in fact
true, within limits, if the set of surfaces 8 is such that
it is possible to construct some function singular on
just this set 8.
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This result is proved by an application of the
continuity theorem for functions of several complex
variables.®® First it can be noted that the actual loop,
as it grows from a point to its final form, can, at each
stage, be approximated to arbitrary precision (point-
wise) by a curve that is a boundary of a disc lying on
an analytic manifold. In particular, if the equation
for the loop at any particular value of the a, is
given in terms of a set of mass-shell variables z; by
z; = z;(6), where 8 is a cyclic variable, then these
equations can be approximated to arbitrary point-
wise precision®! by the expansion

N
z; = > (exp if)"c,
-
= Z; (exp i9).

The surface Z,(z) is a one (complex) dimensional
analytic manifold.® The curve {Z,(z); |z] = 1} passes
arbitrarily close to the original curve.

40 See the article by A. S. Wightman in the Les Houches Lectures,
Dispersion Relations and Elementary Particles, R. Omnes and C.
Dewitt, Eds. (John Wiley & Sons, Inc., New York, 1960), p. 260.

41 G. H. Hardy and W. W. Rogosinski, Fourier Series (Cambridge
University Press, London, 1950), p.21.
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If the original curve is always confined to a bounded
region, as we shall suppose, and remains at more
than some finite minimum distance from 8 throughout
the contribution, which we can suppose, then N
can be held fixed over the entire journey from a, = 0
to a, = u,. Since the boundary curve {z,(2); |z| = 1}
crosses no singularity of 8, neither can the interior
points [z(2), |z] < 1], by virtue of the continuity
theorem. Thus finally at a, = p, we can shrink the
curve to a point by the transformation |z| — 0,

The above argument applies within the limit set by
the requirement that a system of analytic local
coordinates z; can be found such that the loop lies
within the coordinate patch corresponding to these
coordinates. Although the question can be pursued
further, it is simpler to restrict the paths so that no
closed loop occurs within the set of paths.

For the set of analytic functions with the singulari-
ties lying on 8 (at least within the relevant region) we
have in mind the truncated or renormalized perturba-
tion theory functions. It remains to be shown,
however, that the restriction imposed on 8 by the
requirement that only positive- singularities enter
the physical region of the larger process actually
forces § to be identical to the analogous set of
singularity surfaces in perturbation theory.
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The original proofs of the TCP theorem suggest that it may breakdown in an odd-dimensional space—-
time. An explicit example of this breakdown is given and a comment is made about the current X current

interaction,

In relativistic quantum field theory, the TCP
theorem!? is usually proved by demonstrating the
equivalence between the TCP operation and the
combined operation of strong reflection plus Hermitian
conjugation. Under strong reflection’ (SR), all
space-time coordinates are reflected through the
origin

t— —t

(D

and the order of field operators in any product is
reversed. Any relativistically covariant Lagrangian is
SR-invariant? as long as it is properly symmetrized in
accordance with the spin-statistics theorem,® and it
will be TCP-invariant if it is Hermitian.

The crux of this argument is Eq. (1). Because
space-time has four dimensions, the reflection of
coordinates has determinant equal to (4-1), and it is
connected continuously, albeit by complex Lorentz
transformations, with the identity.* Consequently,
there.exist no “pseudo” tensors with respect to SR,
and the phase with which a tensor transforms is
determined by its rank and the spin-statistics theorem.

Suppose now that we consider an odd-dimensional
space-time. In this case the reflection of coordinates
has determinant (—1) and it is not connected with the
identity. Therefore there may exist both “pseudo”
and “proper” tensors with respect to coordinate
reflection, and we can expect a breakdown of the TCP
theorem. To the best of the present writer’s knowledge,
there is no example of such a breakdown in the
literature, and the purpose of this article is to present
one.

We construct the analog of the Dirac equation
for a (2n 4 1) space-time in which x, is the time
coordinate and the x; (k = 1, - - -, 2n) are the spatial

r— —T,

* Supported in part by the U.S. Atomic Energy Commission and
by the U.S. Air Force.

1 W. Pauli, Niels Bohr and the Development of Physics (Pergamon
Press, Inc., London, 1955), p. 30.

2 G. Luders, Ann. Phys. (N.Y.) 2, 1 (1957).

3 G. Luders and B. Zumino, Phys. Rev. 110, 1450 (1958). See also
R. F. Streater and A. S. Wightman, PCT, Spin, and Statistics, and
All That (W. A. Benjamin, Inc., New York, 1964).

% An explicit example of the complex Lorentz transformation is
given by J. J. Sakurai, Invariance Principles and Elementary Particles
(Princeton University Press, Princeton, N.J., 1964), Chap. 6.

coordinates. The required equations are

Io" + m¥(x) =0,

P(x)I",0* — m) =0, (2
where
P(x) = —i¥Hx)T, (3
and
r,r,+ o, =2g,,
[f=-T,, If=+T, k=120, (4

— 800 = 1.
Because there are an even number of spatial dimen-
sions, the parity transformation

Err =

X —> —Xp,
(€)
is an element of the appropriate spatial rotation
group, and Eq. (2) is automatically invariant under
it. The question of TCP invariance then reduces to
one of TC invariance.

Following Luders,? we define the charge conjugation
(C) and time-reversal (G) operations as

C¥(x,, Xk)e_l = m‘?(xo, x,)C,

Xo = Xo

CP(xy, x)C" = —0,CH¥(xo, xp), (6)
'G‘I"(xo, Xk)t_l = 77TT‘F(_X0 > Xz,
BP(xo, x)T " = npP(—xo, x)T*,  (7)

where the 7, are intrinsic phases associated with the
field ¥(x). C is a linear transformation and G an
antilinear one. Equation (2) will be invariant under
C and T if we can find unitary matrices C and T
such that® _

cr,ct=-T,,

,r=T,, ®)

where the tilde denotes transpose. A necessary

condition for Eq. (8) is that there exist a matrix

§ = CT with the property
ST,S§t=—T,.

Clearly § is associated with strong reflections.

)

5 The Dirac field ¥ and its adjoint 'F are assumed to anticommute
with each other.
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Let us consider the lowest representation of the I, .
In (2 + 1) space-time it is given by Pauli matrices

(I, T, TP = (o3, 00, =) (10)

and in (4 + 1) space-time it is given by the Dirac
matrices y;, -, 5. Together with the unit matrix,
the I'® form a complete set, and any other (2 x 2)
matrix must be a linear combination of them. Con-
sequently, it is not possible to find a matrix § satisfying
Eq. (9), and the (2 + 1) Dirac equation is not 7C-
invariant. Similarly, the (4 4-1) Dirac equation
cannot be TC-invariant because any (4 X 4) matrix
is a linear combination of y; and y,y,, with 4, y, » =
1,-++,5.

It is not difficult to generalize this result to the
(2n + 1) Dirac equation. The lowest representation
of the I', in (2n + 1) space-time can be constructed
from the corresponding representation in (2n — 1)
space-time by means of the Kronecker products®?

L = T8 ®o,, [ ® 065, I ®a), (11)

where 7 is a unit (2n — 2) X (2n — 2) matrix. As
defined in Egs. (10) and (11), the I'@* form a
maximal set,® and any other (2#) X (2n) matrix can be
expanded as a linear combination of r-fold products
of the I'®*, withr =1, - -, (n + 1). Consequently,
there exists no (2n) X (2n) matrix S which satisfies
Eq. (9), and the Dirac equation cannot be TC-
invariant.

Up to now we have taken it for granted that the
mass m in Eq. (2) does not vanish. The presence of
this term is responsible for the choice of signs appear-
ing on the right-hand sides of Egs. (8) and (9); and if
it were absent, i.e., m = 0, we would be free to make a
different choice. In particular, we could replace the
matrices C and 7 by two others, C’ and T, whose
product S = C'T” obeys

ST,S "= +T,, (12)

rather than Eq. (9). Since there exists one matrix which
always satisfies Eq. (12), namely, the unit matrix, it
would seem that the breakdown of TCP does not
occur for the massless Dirac equation.

It can be shown, however, that the breakdown
persists when we introduce interactions between
different particles. Equation (12) implies that T,
behaves as a pseudovector with respect to the reflection

8 For a discussion of the Clifford algebra [Eq. (4)], see H. Boerner,
Representation of Groups (North-Holland Publishing Co., Amster-
dam, 1963), Chap. 8.

7 A. Pais, J. Math. Phys. 3, 1135 (1962).
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of coordinates:

r,—+r,, (13)

while the differential operator behaves as a proper
vector:

0, —0,. 14
As a result, the currents®

Ju= ¢l
and "

K, = ¢0,¢' (15)

constructed from massless fields ¢ and ¢’ transform
with opposite phases, and any interaction involving a
linear combination of them, for example,

{J,+K,,Jt+ K}, (16)

is not TCP-invariant. Other examples of noninvariant
interactions are easily constructed.

It is interesting to compare the current X current
interaction in (2n + 1) space-time [Eqgs. (15) and (16)]
with its analog in (3 4 1) space-time. In the latter
case, the produce of SR and Hermitian conjugation
transforms a current §,(r, £) according to the rule

3/1(‘3 t) - —3’:(-1’, —t)s (17)

no matter how the current may be constructed.® The
sign on the right-hand side of Eq. (17) is fixed because
the reflection of coordinates [Eq. (1)] belongs to the
complex extension of the proper Lorentz group, and
it implies that the symmetrized product

3., 33} (18)

is always invariant under Eq. (17). Thus we see
that the TCP invariance of the usual current X current
theory of weak interactions is a consequence of the
even dimensionality of our space-time.®
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8 It is assumed, of course, that the usual connection between spin
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® G. Rajasekaran [Phys. Rev. 160, 1427 (1967)] has discussed the
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then F, must transform according to Eq. (17). His result does not
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In this paper, a projective geometric formalism for the description of the conformal compactification
of Minkowski space and of its invariance groups is developed. It is then modified to include the description
of Minkowskian vectors, in particular, the momentum space. The d’Alembert equation is solved by con-
structing its solutions from global null data, completely arbitrary numbers assigned to the null cone at
infinity. The Klein-Gordon equation, solved by the same method, leads to the concept of pseudonull
data. Pseudonull data are also arbitrary numbers, buu they are assigned to hyperboloids at a suitably
defined infinity outside the conformal compactification of the Minkowski space.

I. INTRODUCTION

It has been shown by Penrose ! that noninteracting
spinor fields of zero rest mass and any spin are
relatively invariant under conformal transformations;
i.e., they are invariant up to some power of the
conformal factor. In particular, one can compactify
the Minkowski space with a conformal factor,
singular at infinity. The new space is of constant
curvature, and it is homeomorphic to the product of a
circle with a three-dimensional sphere. Its invariance
group is the 15-parametric conformal group, iso-
morphic with SO(4, 2). Consequently, free spinor
fields are covariant with respect to this group.

A global study of these fields yields some interesting
results, e.g., that it is possible to obtain them from
global null data. The concept of null data was also
introduced by Penrose* (in the more general back-
ground of Riemannian spaces, but locally). Unlike
Cauchy data, which may not be given on a character-
istic hypersurface, null data are given on null cones.
In this paper, the null cone at infinity is used. The
global null data for zero-rest-mass free-spinor fields
are complex numbers, one complex number being
arbitrarily assigned to each point of the null cone at
infinity (which reminds one of the Bondi-Sachs news
functions).

Once the formalism of global null data is developed
for zero-rest-mass fields, it is most natural to inquire
whether a similar geometric approach to fields of
nonvanishing mass exists. In this paper, that problem
is solved for scalar fields, solutions of the Klein—
Gordon equation.

Since this equation is not conformally invariant, the
conformal compactification of the Minkowski space

* Supported in part by the U.S. Air Force Office of Scientific
Research under Grant No. AFOSR 816-67.

! R. Penrose, in Relativity, Groups, and Topology (Gordon and
Breach Science Publishers, Inc., New York, 1964).

% R. Penrose, “Null Hypersurface Initial Data,” in P. G. Berg-
man et al., Quantization of Generally Covariant Field Theories
(Syracuse Univ., preprint ARL 63-56, 1963).

is not a natural setting for this problem. One must be
able to deal with infinity without having to bring it
into the space itself. However, this compactification
must exist as a limit within the formalism, since it
must appear in the limit of vanishing mass. Klein’s
Erlangen program provides a general solution to this
kind of problem. It consists in taking, for an original
n-dimensional pseudo-Euclidean space of signature
5, an (n + 1)-dimensional real projective space, and
selecting in it an invariant n-dimensional quadric of
signature s. This quadric represents the conformal
compactification of the original space, whose con-
formal group is isomorphic with the subgroup of the
projective group under which the quadric is invariant.
By requiring that one point of the quadric be fixed
(puncturing), one recovers the original pseudo-
Euclidean space and its invariance group

SO[i(n + 5), $(n — 5)].

Given an invariant quadric and a fixed point, the
polar hyperplane of this point with respect to the
quadric is also invariant, and so is the intersection of
this hyperplane with the quadric. If the metric of the
original space is positive-definite, this intersection
consists of a single real point—the fixed point of
contact itself (e.g., the north pole of the sphere in the
elementary case of stereographic projection). If the
metric is indefinite, the intersection is a real (n — 1)-
dimensional quadric in the polar hyperplane (e.g., the
null cone at infinity in the case of the Minkowski
space).

The original pseudo-Euclidean space studied in this
paper is the Minkowski space M*. The corresponding
real projective space P5(R) is built over a real six-
dimensional linear space L®(R). The conformal
compactification G* of M* is a quadric Q* < P5(R),
and M* itself is the intersection of Q% with a five-
dimensional affine space 4% < LS The complement
of M*in Q*is the null cone at infinity, J. This null cone
is also the intersection of Q* with a five-dimensional
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linear subspace I° of LS. It is shown that I5, called the
linear space at infinity, is related to momentum space.
Null momenta correspond to points of I < I8,
nonnull momenta of given mass m to points of some
hypersurface in I°, M%(m?) < I°. Global null data
for the d’Alembert equation are given on J, ie.,
within the conformal compactification of the Min-
kowski space, those for the Klein-Gordon equation,
on some three-dimensional subsets (mass shells) in 75,
outside the conformal compactification of M*,

This paper is logically self-contained, but familiarity
with Penrose’s description of the conformal compacti-
fication of M* is assumed.

II. THE SIX-DIMENSIONAL FORMALISM

Let L® be a real six-dimensional linear space. If
x € L8, its six coordinates will be labeled by x4, where
capital Latin indices run from zero to five. A real
projective space P® is built over L¢ by identifying its
points with the one-dimensional linear subspaces
(i.e., rays) of L8 If x4 e L8, the same index attached
to the corresponding capital letter in the kernel
represents the corresponding point in P?, i.e.,

Fundamental quadric: Q* < P% of signature —2,
e.g., nyp=diag (41, -1, -1, —1, -1, +1), is
kept invariant. The corresponding linear structure
C50) < L® is called the fundamental cone. Their
respective definitions are:

DEF
Q' "= (X4 e P*| nsX X" = 0},
C*0) Z {x1e I’ | n4px4x® = 0}

The bracket symbol is used for scalar products, both
in L% and P%, e.g.,

x, 0= Napx?x® = x x4,
Two systems of basis vectors in L® are needed.
Orthogonal Basis: It consists of the six vectors,
es? € L8 In this notation, the first index names the
vector, the second is the component. These vectors
satisfy the following orthogonality relations:

CD, A

eclen” = 4%,

M

Quasi-orthogonal Basis: This system provides the
most straightforward transition to M*. It consists of
the first four vectors of the orthogonal basis e,
(lower case Latin indices run from zero to three)
and of two null vectors o4, i4, defined by

(ecs eD) ="%Neps N

o= e e, i1=ed — el

(2a)

GRGIN

The corresponding orthogonality relations are:

(e(,, eb) = Wabs ‘
(0,8) = =2, (0,0) = (i,i) = (0,¢,) = (i,e,) =0,

N4B = ﬁabeaAebB — Oe4ipy s (2b)

where 7,, is of signature —2, e.g., n,, = diag (+1,
-1, —1, —1).

The Null Objects: A number of geometric objects in,
or related to, the quadric Q* [or cone C3(0)] will have
interpretations in M*. It is convenient to call them
null objects. The null objects needed in this paper are
now defined. Their definitions are given in terms of
projective coordinates, but they are used either in
P35 or L8, as needed.

The points of Q* are called null points. They are
defined by the null condition

X, X) = 0. (3a)

For any point U4 € PS5, the linear equation (U, X) = 0
represents a hyperplane in P% (the polar hyperplane
of U4 with respect to Q%. If (U, U) = 0, this hyper-
plane is tangent to 0%, and is called a null hyperplane.
For any two points R4, §4€P5, the parametric
equations X4 = AR4 + uS+4 represent a projective
line in P%, A: u being the projective coordinates on this
line. If every point of this line is a null point, the line
is called a null line. The necessary and sufficient con-
dition for this is

(R,R) = (R,S) = (S,8)=0.

If only one point of a line is null, but if the line is
located in a null hyperplane, it is called a pseudonull
line. The necessary and sufficient condition for this is
that there exist a point R4 on the line (the point of
contact) such that

(R, R) = (R, 8) =0,

(3b)

(S, 8) # 0. (<)

The set of all psendonull lines through a point
consists of two distinct parts: the timelike and the
space-like pseudonull lines. They are defined,
respectively, by (S, §) > 0, (S, S) < 0. The set of all
null lines through a null point R4 is the null cone
C(R4) with vertex at that point. The points X4 of the
null cone are simultaneous solutions of the equations

(R, X) = (X, X) = 0. (3d)

The null cone is the common boundary of the two
sets of pseudonull lines through its vertex and, with
them, it fills the null hyperplane at the vertex.
Minkowski Space M*: The points X4 € P® not in-
cident with the null hyperplane at i4, i.e., satisfying
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the inequality (i, X) # 0, can be uniquely represented
by affine coordinates:

x4 = X4/, X). (42)

These variables represent the points of an affine space
A% < L8, defined by the affine condition:

(i, x)=1. (4b)

One can project A% onto a four-dimensional space
of parameters x* (soon to be identified with Minkow-
ski coordinates) by the relations

x* = (e, x). )

Let a point X4 e P5 be expressed in terms of the
vectors of the quasi-orthogonal basis (2):

X4 = a2 + bit + co,

(6)

where only the ratios a®:b:c of the coefficients are
defined. The null condition (3a) implies %,,a%" —
4bc = 0. The affine condition (4b) removes the
homogeneity from the coefficients and implies
¢ = —#%. If both conditions are applied simultaneously,
one obtains the following relations:

4 2.4 _

= x%,4 — }x%4 — }ot, (7a)

(7b)

X
(O> X) = x2’

where X? = ,,x°x?, x* being defined by (5).

If one identifies the space of parameters x* with
M?*, relations (5) and (7a) establish a homeomorphism
between M* and the intersection of the fundamental
cone with the affine space. This intersection is denoted
by M*(0):

DEF

M*0) = C5 N A5, (8a)

From the projective point of view, this space is also
the complement in Q* of the null cone at infinity, J
[defined by (3d), with the substitution R4 = i4]:

M*0) = Q* — 3. (8b)

The quadric Q* itself is homeomorphic with the
conformal compactification M* of M*:
Mt = Q4 (8c)
Linear coordinates x4, simultaneously satisfying
the null and the affine conditions, ie., x4 € M*0),
are called affine null coordinates to distinguish them
from Minkowski coordinates x* € M* The symbol
“x% <> x4 means that they are related by equations
(5) and (7a).
The Minkowski Distance: If x,y € M* are any two
points of M*, one obtains, using (2), (5), and (7), and
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the relations x* <> x4, y*<«> y4 the following ex-
pression for the square of their Minkowski distance:

(%, y) = (x* = o) = —2(x, ). ©

One notices that a quadratic expression in the
Minkowski variables is represented by a bilinear one
in the affine null coordinates, the quadratic dependence
having been absorbed by the fundamental cone.

Hyperspheres in M*: For a given point x* € M*, the
set of all points y* € M* satisfying the relation

d*(x, y) = g% = const (10a)

is called a hypersphere in M. It follows from (9) that
it is represented by a linear equation in affine null
coordinates

(u, ) =0. (10b)

From (9) and (10b) one obtains the expression for
u4 in terms of the five parameters defining the hyper-
sphere (the center x® <> x4 and the radius squared,
'k

ut = x4 + 3q4%4. (11a)

It follows that w4 satisfies the affine condition. The
inverse relations are
qz = (u, u),

x4 = ud — Yu, u)it.

(11b)
(1tc)

The condition for a hyperplane (U, X) =0 to
represent a null cone, both in the projective sense
(3d) and-in the Minkowski sense (10a), is (U, U) = 0,
so that the two concepts are equivalent in M%, The
projective definition is more encompassing, however,
since it applies as well to the case (i, U) = 0. The
Minkowski interpretation of this case must be found
separately.

Let I° denote the five-dimensional linear subspace of
L% defined by the equation (7, x) = 0. This space
I < L8 will be called the linear space at infinity. If a
point, expressed in the form (6), belongs to I5, it
follows from (2) that the coefficient ¢ of 04 vanishes:

ud = ue, A — vi4, (12a)

From (7a), (10b), and (12a) one obtains

A.——

Ux* —v=0,

(12b)

which represents a hyperplane in M*.

Thus, in the projective formalism, the intersections
of the hyperplanes of P5 with Q* represent the two-
sheeted hyperboloids in M* (4% > 0); the null cones
(4* = 0); the one-sheeted hyperboloids (4* < 0); and
the spacelike (u2 > 0), null (u® = 0), and timelike
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(#? < 0) hyperplanes. This is an instance of the general
theorem about the conformal equivalence of hyper-
spheres and hyperplanes. In the transition to metric
geometry, which is done by selecting a hyperplane in
the projective space and calling it the hyperplane at
infinity, a distinction appears between hyperspheres
whose centers are in the finite region and those with
centers at infinity. The latter represent hyperplanes
in the metric space.

. THE TRANSFORMATION GROUPS

The continuous groups of transformations in M?
are isomorphic with the proper quadric group in P5.
The quadric group in PS is the subgroup of projective
transformations under which the quadric Q% is
invariant. The discrete symmetries of M* correspond
to a subgroup of improper involutions in P

The Proper Quadric Group and its Subgroups: The
proper quadric group in P% is an SO(4, 2). Its general
element is

EAB = CXp (’YACCCB)a (13a)

or, for infinitesimal transformations,

Edp =645 + C4p, -+, C4C%~0, (13b)

where Cp is an arbitrary skew-symmetric matrix.
The special 15-parametric conformal group in M*
is isomorphic with SO(4, 2). The relations establishing
this isomorphism are now derived. Equations (14) are
definitions of the generators of the quadric group,
expressed in terms of the quasi-orthogonal basis:

DEF

M43 = €448 5 (14a)

4 bivectors, (14b)
4 bivectors, (l4c)
(14d)

6 bivectors,

DEF .
Asup = 2€,4p
DEF
Boup = 2¢,,0p

DEF

Kip = O 4ip 1 bivector.

The following list of isomorphisms follows from
), (5), (1), (13), and (14). The relations x* « X4
and x% < X4’ are to be understood throughout.

The homogeneous Lorentz group (6 parameters
m[ab]).

MALZ exp (MM, 45) = M%e ey, (152)
where M"b = exp (m%). The isomorphism is
X4 = MAZXB < x¥ = M%x".
The group of translations (4 parameters a%):
A1y = exp (a°Ap) = 0p + a®A 1y — }a’itip,
XA = A1pXE < x¥ = x" + a° (15b)
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The group of uniform accelerations (4 parameters
b%):
By = exp (bB,"p) = 6“p
X4 = BA4XE < x*
= (x* + x2)/(1 + 2b,x" + b*x?).

The group of dilations (one parameter k):

+ b4B A — }b%“op,

(15¢)

DA, = exp (kK4p)
g + 31 — eMotiy + (1 — &H)idop,
"= DABXB < xv (15d)

One sees from these relations that o4 and i4 play
reciprocal roles. A uniform acceleration is equivalent
to a translation of the point at infinity i4 [cf. Eq.
(16a)], and what is interpreted as a dilatation with
respect to one of these points, is a contraction with
respect to the other.

The Poincaré group is characterized by the fixed
point i4, Indeed, from (2) and (15) one obtains
M45iB = j4 and A45i8 = i4, while

i = BLiE = —2b%c% 2 — ic%id —
where ¢® = b%/b* and

iA' — DABiB = RkiA.

XA

= e*x%

30%), (l6a)

(16b)

Symmetries: Let u4 be any point of 45 or I°, not on
the quadric Q*. The transformation

(u)'g = é4p 2 utug
u, u)

17

is an improper involution in P5, It represents a mirror
reflection in the nonnull hyperplane defined by
(u, X) = 0. It leaves the quadric @* invariant, so it
can be interpreted in M*. By taking for 44 the vectors
of the orthogonal basis, one obtains the following

transformations of M*:
T4, = (%4, (18a)
which represents time reversal: x° — —x°.
Py = (&) () (e s (18b)
gives the parity transformation: x* — —x°.
S5 = (¢'s (18¢)

represents the inversion on the two-sheeted unit
hyperboloid in M*, i.e., x* — x°/x% Similarly,

Sy 2 oYy (184)

is the inversion on the one-sheeted unit hyperboloid:

x*— —x%/x2,
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The transformations 7" and S, , on the one hand,
and P and S_, on the other, are essentially the same in
the space A(*, since they differ only by transformations
from the proper quadric group. However, while i4
is a fixed point of the transformations T and P, it is
not invariant under inversions. Under inversions it
transforms according to

i = 5,458 = o4, (192)

4 = 8§ 4,8 = —o4, (19b)

Inversions are not symmetries of M*, They interchange
the null cones at infinity and at the origin. With the
Poincaré group, they build the full conformal group
of M* (Liouville’s theorem).

IV. MINKOWSKI VECTORS

From now on, the invariance group of interest is
the Poincaré group, so that the point i< is fixed.
Consequently, the linear space /5 is invariant. Since
the spaces I5 and M*(0) are disjoint, the points of I®are
available for some useful interpretation consistent
with their invariance properties. It has been shown
earlier that their ratios represent hyperplanes in M4,
However, the points of I° themselves contain more
information than necessary to determine a hyperplane.
One can interpret them as representing hyperplanes
with Poincaré invariants attached to them. It is now
shown that they can also be interpreted as Minkowski
vectors with noninvariant numbers (phases) attached
to them. A particularly important application of this
interpretation is the representation of momentum
space by I,

Minkowski Vectors: Minkowski vectors are the
points of a four-dimensional linear space, to be
denoted by M?% (for “centered M*”) provided with a
Minkowski metric. In the transition from M?* to the
six-dimensional formalism, the centering restriction,
which eliminates translations, can be interpreted as a
requirement of invariance under the translation
operator (15b).

The necessary and sufficient condition for a point
v4 e L® to be invariant under translations, i.e.,

AABUB —_ UA,
is that the coefficient of 04 in (6) should vanish:

vd = v, — wid, (20)
which is equivalent to the requirement (i, v) = 0, i.e.,
v els.

Relation (20) establishes the interpretation of
Minkowski vectors in LS. The variable w, to be called
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the phase, specifies the location of a hyperplane in M*,
It is an extra piece of information, not contained in
the Minkowski vectors themselves. The projection of
I5 onto a linear Minkowski space M? is v® = (e%, v).
The symbol v* < v4 (or v* <> v4 if the phase is given)
means that v* € M? and v € I® are related by relations
(20).

If a faithful representation of M? in I° is desired,
one must eliminate the freedom of the phase. A simple
way of doing this for vector fields v*(x?) in M* consists
in requiring that the hyperplane in M?*, defined by
v*(x?),be incident with x?, ie., x4v,(x®) = 0, where
x% <> x4 and v* <> v4, This incidence condition deter-
mines the phase:

w = v,x% 21
Tangent Vectors: Differentiation of (7a) yields
dx4 = (2,4 — x,i?) dx°. (22)

Obviously, it is a vector, since (i, dx) = 0. It also
identically satisfies the incidence relation: (x, dx) = 0.
Inversely: dx® = (e, dx). 1t is easy to verify that the
infinitesimal translations by dx®, defined by (13b) and
(14b), yield the same expression (22). One finds the
expression

dx? = (dx, dx) (23)

for the Minkowski metric in infinitesimal form.

Cotangent Vectors: Let f be a scalar test function, to
be understood as f(x?) or f(x4), and let V, € I5 be the
vector differential operator corresponding to the
gradient 0, € M*. According to (20), V,, must be of
the form

V,y=e¢*,0, — wiy. (24

The identity means that the relation should yield an
equality when applied to any test function.

From the null and affine conditions (3a) and (4b)
and from the requirement V (const) = 0 follows

With (24) and (7a), these equations yield, respectively,
xpwxB = 0, igwx® = 0. Consequently, w must either
vanish, or be a scalar differential operator. Since
V4 represents the gradient, w should be linear and of
the first order. The second of the above equations,
which implies w(i, x) = w = 0, requires that it be
homogeneous; hence w = 5°0,. With this form of w,
both conditions are satisfied for any $° Due to the
isotropy of M*, §* may not be a fixed vector. The only
solution for §* which does not introduce new structure
into the space is §* = Sx%. It is not possible to deter-
mine the value of the coefficient S from the geometry
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of the space. It is essentially arbitrary. In the following
it is restricted to unity by imposing the incidence
condition (21). Thus,

V.A. = (eaA hd xaiA)aa. (26)
From (7a) and (26) follows the identity:
VxB=6,8—i,x% — x,i®, @n

which must be taken into account in the application
of V,.
The expression

O=(,V)
for the d’Alembertian follows from (26).

(28)

V. NULL AND PSEUDO-NULL DATA

If p4 is a constant vector, p4 € I5, it follows from
(27) that the scalar function z = (p, x) satisfies the
d’Alembert equation [Jz = 0, and has the eikonal
(Vz, Vz) = (p, p). Hence, for an arbitrary function
f(2),

0fG) = (. p)f"(@).

The d’Alembert Field: If (p, p) =0, ie., if p4 €3,
f(z) identically satisfies the d’Alembert equation. The
same is true for the sum of all arbitrary functions
S(p4; z), one arbitrary function of z being assigned to
every point p4 € J:

f(x4) = §Jf(p“‘; z)

29)

(30)

(the summation symbol § stands for discrete sums
andfor integrals). This summation over the three-
dimensional set 3 can be reduced to a sum over a
two-dimensional sphere in the following way: Con-
sider an arbitrary but fixed point a4 € M*0). The
intersection of the null cone C(a4) with vertex at g4
and of the null cone J is a two-dimensional sphere
(see Fig. 1):

S¥a") "= 3 n C(a?).
The arbitrary point p4 can be expressed in the form

(3D

where e4 € S2(a4) is on the generator of J incident
with p4. The parameter u locates the point p on this
generator.

From (31) and the definition of z one obtains
z =u+ y, where y = (e, x). This expression for z
and the expression (31) for p4 are now introduced
into (30). The three-dimensional summation splits
into a summation over the two-dimensional sphere

PA = eA + uiA’

GRGIN

Fig. 1. Summation of null data.

S%(a4) and an integral over u. With the notation

f_ du f(e* + ui'; u + y) = gle; y),

where g is an arbitrary function, since f is arbitrary,
the expression (30) becomes
foxHy= S

e1eS%(a

8D, (320)
This expression can be reinterpreted. Let the point
n4 € $%(a4) be defined by the relation nd = e4 — yj4

and introduce the notation g(e4; y) = ¢(n4); then

[ty = S on), (32b)
n4eS? (x4)

The numbers c, arbitrarily assigned to the points
of 3, are the global null data for the zero-rest-mass
field f(x*). At any point x4, this field is the sum of the
null data its null cone collects at infinity, where the
data are given.

The expression (32b) is the generalization to M* of
the solution f(x,t) =g(x —¢)+ h(x + ) of the
one-dimensional wave equation. The functions g and
h can be thought of as the null data assigned to the
null cone at infinity of M2 In this case, the null
cones are degenerate, consisting only of two null lines.
The parameters x — ¢ and x 4 ¢ determine the points
n4 on the degenerate null cone at infinity.

The Klein-Gordon Equation: Let M*(m?) denote the
representation in I° of the mass shell in momentum
space:

Mim®) E {p* e I'| (p, p) = m}.

The space M%,(m?) is the Cartesian product
M4 (m?) = R' X M?®@m?). Here, R’ is the range of the
arbitrary real phase w, while M?3(m?®) represents,
essentially, the mass shell (p, p) = m? in momentum
space.

(33)
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If p4 € M* (m?), the function f(z) in (29) must be of ~becomes

the form
f(p%; 2) = A(pHe”,

if it is to satisfy the Klein-Gordon equation
@O+ m)f=0.

The sum of all such functions over M*_(m?) is also a
solution.

As in the mass-zero case, let a4 be an arbitrary but
fixed point in M*0). Let H3®(@a*;m?) denote the
intersection of M* (m?*) with the hyperplane T*(a#)
tangent to C® at a4; i.e.,

DEF

T!a*) = {x* € 4’| (a, ) = 0}

and

H¥a?; m*) = Ta%) n Miy(m?).

The point p4 can again be written in the form (31),
provided

et e H¥a4; m?).
The four-dimensional sum in the expression

fxy= S  A@pHe*

pde M j(m?)
splits into a three-dimensional sum and an integral.
With the notation

g(e) = f du A(e? + uid)e’™,

where g is an arbitrary function over H3(a4, m?)
(since the integrand is arbitrary), the solution f(x4)

S = S glehe

edeH (g4;m®)

(34a)

The arbitrary numbers g assigned to H*(a4, m?) are
called pseudonull data, or m* data.
Given the global pseudonull data on H%(a4, m?),

one can assign the numbers C(n4 = glehe™ to
the points n4 = e4 — yi4 of M* (m?). Then, the
solution f(x4) becomes

faxH= S

3 2
nde H  (x4;m

C(n4). (34b)
)
This is similar to the form (32b) for the mass-zero
field, but it is not as economical.

In the zero-rest-mass case, the null data are arbi-
trarily given over the three-dimensional set J. They
are then collected over a two-dimensional subset of J
by all the null line through the point x<. Their sum is
the field at this point.

In the case of nonvanishing mass, the null data
are arbitrarily given over a three-dimensional subset
of M* (m®). They are then spread over the entire
M’ (m?), and collected over one of its three-dimensional
subsets by all pseudonull lines through the point
x4, Their sum is the field at that point. If m? > 0,
only the timelike pseudonull lines collect the pseudo-
null data.
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The Ising chain is represented as a system of fermions interacting through two-particle forces. All
thermodynamic Green’s functions are calculated exactly in this model. They exhibit many properties
expected on the basis of general theory for Green's functions of the interacting particles.

1. INTRODUCTION

In statistical physics, as in other many particle
theories, no realistic exact solutions are known.
Therefore, several exactly soluble models have been
invented to study various properties of real physical
systems. Among such models the Ising model for a
system of interacting spins plays an important role.
In this paper, we present exact thermodynamic
Green’s functions for the Ising chain (one-dimensional
Ising model). These Green’s functions contain all the
information about not only static but also kinetic
properties of the Ising chain. As a result of conserva-
tion of individual spins in the model, these kinetic
properties are very simple. Nevertheless, we feel that
the complete set of exact Green’s functions for a
model with interaction is worth mentioning. In this
paper we investigate a system of N identical fermions
whose Hamiltonian H has the form

N
H= -~ Z (Bs; + %es;s5,41), (1.1
i=1

where
s; = 2afa; —- 1,

— o
Ay = A1s Ay = 4y,

and a}, a; are the creation and annihilation operators
of a fermion in the ith state. The basis in the space of
state vectors of the system contains 2V vectors, which
can be formed by acting with products of creation
operators on the vacuum-state vector. These basic
vectors can be put into a one-to-one correspondence
with the states of the classical Ising chain, the energies
of the corresponding states being equal. The existence
of this correspondence enables us to describe the
properties of interacting spins with the use of a many-
fermion formalism.

In Sec. 2 we define the Green’s functions and
calculate them exactly. In Sec. 3 we discuss briefly
their properties and we analyze the information which
they contain.

* A preliminary report on this work has been published in Bull.
Acad. Polon. Sci. Ser, Sci. Math. Astron. Phys. 15, 211, 357 (1967).

2. CALCULATION OF GREEN’S
FUNCTIONS

We define the thermodynamic Green’s functions in
the usual manner!:

G2k, Kk ---2'1)
= (Tla(1)aQ2) - - - all)a* (k') - - - a*(2Na* (1)) (2.1)

Here T represents the Wick time-ordering operation
and the brackets ( ) denote the grand canonical
ensemble average. The time dependence of the
creation and annihilation operators is given by

a'(r) = ai (1) = et e

= g it By —ity€lon,  ton )

Sy 4
r—1 an’ .

a(r) = a, (1) = e, e
28 ityelsn )

= ¢ 180,y a, .
T

Since [H,s5].=0 [see (1.1)], we can write the
Green’s function (2.1) as a sum of k! terms in the form

G(12- kK ---2'1)

= pgm eplsnlmlv e 5nkmk:g(1 ok, lllc te ii): (2-2)
[CIVRRRIE 78
where
gl ek, iy ip)

= (T(an,(t) " an(8an(t,) * - a8,

and ef equals +1 or —1, depending on whether the
permutation (#;, iy, * * -, ) of the numbers 1,2, - -+,
k is even or odd. The summation in (2.2) is extended
over all inequivalent permutations. The calculation of
the Green’s functions (2.1) is especially simple if the
condition

Ine—ni =2 (%)) 2.3)

is fulfilled. The case of |n; — n;] < 2 is discussed
later on. Apart from the condition (2.3), we assume,
for the sake of convenience, that

< ny L 0Ly,

1 1. P. Kadanoff and G. Baym, Quantum Statistical Mechanics
(W. A. Benjamin, Inc., New York, 1962}, p. 3.
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Before engaging in any calculations, we notice that
the following equality holds:
g(l...k’k’..-l’)

= (T(a,,(t)a5,(1)) - - T(@, (t)ay, (). - (2.4)
This follows from the fact that if the condition (2.3)
is satisfied and if i # j, we have

[a(®), a(],. = [a(D), a* (]
= [a*(D), a* (D], = 0. (2.5)

The chronological product of the operators a,(f)
and a}(¢’) is given by
T(a,(a%(r)

= 3(sgn A — s,) exp (i2BA) exp (ie(s,,; + Sp,-1)A),
where A = t — t’. In order to evaluate (2.4) we make
use of the transfer-matrix method.? Let x = }fle and
y= BB+ u/2). (B=1/kT and u is the chemical
potential.)

We introduce the matrix

¥ ~z
- 2)
e, v
and the matrix

U u
S —_ ( 1 2 ) — S"'l,
Uy, —Uy

which diagonalizes P. The elements of S satisfy the
relations
u¥=1— ul = }(1 + sinh y(sinh® y + =y,
Quyu, = e *(sinh? y + =493,
The eigenvalues of P, 4, , and A_ are
A, = é°(coshy & (sinh®y + e},
Let us define three additional matrices

P = (0, 0), F< (-1, 0),
0, 1 0, 0
ei‘Ar 0
) A=t — 1.
( O’ e—z(A,)
For the infinite Ising chain with the aid of the transfer-
matrix method we obtain
g(l...k’k’...l’)
— Tr {(1 0)(g(1, 1, £, 1'))(1, 0 )
0, 0/\f(1,1), h(1,1)/\0, prem—2
x (g@ 2), 1, 2')) (1, 0 )
f(2, 2')’ k(z’ 2/) 0’ ynk——nk_l—z
y (g(k, k), flk, k’))}
Sk, k), hk, k)]

and
W. =

T

2 K. Huang, Staristical Mechanics (John Wiley & Sons, Inc.,
London, 1963), p. 346.
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where
y =2/,

The functions g, f, and / appearing in (2.6) can be

found from the relation

(g(r, ), h(r,r)
h(r, r"), f(r,r")

Iyl < 1. (2.6)

) — ¢*BAHSW,PF> PW,S9(A,)
+ SW,PF<PW,570(—A,)).
Let us write g(r, ') in the form
gr,r) =g>(A)0(A,) + g=(A)6(—A,).

We define />, f<, >, and A< in a similar way. After
some calculations we obtain

g>(A) = llzeiZBij(A),

F7(8) = 1T B A)p(A),

h >(A) = lfeﬂBApz(A),
where

7T(A) — ule—weieA‘+ uzea:—ye—ieA

and

p(A) = uge%e* — u e Ve A,

The function g = is related to g= by the equality

g Q) =g (t—1t) == g7 (t —ip) = 1).
The similar equalities hold for /< and A<. From (2.6)
we obtain
8(12,2'1) = g(1, 1g(2, 2) + y™ "% (1, 17/(2, 2),
g(123,32'1") = g(1, 1")g(2, 2')g(3, 3")

+ yrm (1L, 1012, 283, 3)
+ ymmg (1, 1)£(2, 2 /G, 3)
+ ymmmf (1L 1RR, 2) /3, 3).
In general,
g2k, k' 21"y =g(1,1)g(2,2") - g(k, k')
+ ymmi (1, 1) f(2, 2083, 3) - - - gk, k)
oy, 1) gtk — 2, (k — 2))
Sl =1, (k= 1) [, &) 4 - + 4 ymi=mazted
x f(1, 192, 2) -+ - h(k — 1, (k — 1)) f(k, k')
The structure of this sum is the following: Each term
contains a factor p*. All possible values of o, except

« = 0, are obtained by taking all the sums of the
quantities

Ry — My —2, Mg—Nyg— 2, M — My —2

under the condition that none of these quantities
appears more than once in the sum. The factor »*
is multiplied by a product of k functions g, 4, and f
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according to the following rule:

function
(i) n, appears in « f@r,r)
(ii) n, has canceled in « h(r,r)
(iii) neither (i) nor (ii) g, ).

After having calculated g(12---k, k' ---2'l"), we
obtain the Green’s function with the help of (2.2).

We can also compute the Green’s functions with
the use of the transfer matrix method when the con-
dition (2.3) is not fulfilled. However, for |n; — n;| =
1 and n; — n; =0, the results are much more
complicated because the anticommutation relations
(2.5) do not hold in these cases. For example, if
k=2, n =nand n, =n + 1, the Green’s function
(2.1) has the form

G(12,2'1") = Opp, Opprng Aty — 11, t; — 13)
- 6nng’6n+1n1’A(t1 - té’ t — t]’.)’

where

A(Al s A2)
— l:aeizB(AHAz)e—iE(Al 82N Az+Az sgn Al)ea: sgn (AjAa)—y
X fAANfAYA + 3 6(t — ) Ot — t")
X O(¢" — t)[eertrIeen add) _ q]),
Here

f(A) = sgn Ae—vsen A(uleicAev—-a: sgn A + uze—JiEAem sgn A)

and the sum )/ is extended over all the permutations
(t,t',t", ") of the parameters tl; 1,1, t;, excluding
the eight permutations in which simultaneously
t,, t; and t,, ¢, are neighbors.

3. PROPERTIES OF GREEN’S
FUNCTIONS
Let us consider one-particle Green’s function
G(1,1) =34, g(1,1). We write it in the form
G(1,1)
= 00 (87 (BDB(B)) + g5(BDO(—AY)
= 6mm’lfeiZBAl((ule_me“Al + upe” Ve A (A,

— (u,€5e" 21 4 uye e A H(—A))).

nini

In order to analyze the structure of G(1,1") it is
convenient to introduce the spectral function

+o0 X <
A@) = [ " ae"g() — 5°0)
—00
= 2mA 22"V (1 + & M)d(w + 2B + 2¢)
+ 4u,u, cosh yé(w + 2B)
+ u2e= (1 4+ P 9-m§(w + 2B ~— 2¢)).
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The spectral function A satisfies the sum rule

+o0
49 4wy =1
27

—o0
and determines the Fourier transform of G(1, 1'):

+
G, 1) = ib, f

0 -] ’
d_a) e—-t'a)Al dw

o 2 —© 211'
PP : N1 — gty
X [ w_w'—mé(w—w)m]A(w).

Using the interpretation of one-particle Green’s
function as a particle propagator, we conclude that a
fermion added to our many-fermion system can
propagate in three states with energies

o, = —2(B + ¢€),
Wy = —2B,
wg = —2(B — €).

These energies are in fact, up to the factor of 2, three
possible energies of a spin in the classical Ising chain.

In the limit of zero temperature, the one-particle
Green’s function has the form?

G(I’ 1,)|T=o = aﬂlnl’go(ls 1,)’

where
F eiZAﬂB:t:e)O( F Al)

2, 1) = | T £ B +uD)>0,e+1B+u2>0,
% eizBAl(e( Al) ei2€A1 _ e—izsAle(_ Al))

for €+ |B + u/2| < 0.

It turns out that all the Green’s functions at 7 = 0
can be expressed in terms of functions g~ and g<.
We notice that in the case € + |B + u/2| <0 at
T = 0 the Green’s functions do not have the cluster

‘property. In all other cases (zero or nonzero tempera-

tures) all the Green’s functions factorize when the
“distance”

dny--n.,n., - m) =min|n; — ny

(i =1,-,r )
j=r+1,---,k
between two groups of indices 7, + - - m,and ., - *
tends to infinity:

limg(l- -k, k'--- 1)

d— oo
=g(1...r’r’...1’)g(r+1...k’k’...(r+1)').
The last property follows directly from the Eq. (2.6),
if we take into account that |y| < 1.
The Green’s functions taken at ¢, =t, ==

$ The special case B + u/2 = —e > 0 gives rise to some peculiar
form of the Green’s function, which will not be given here.



GREEN’S FUNCTIONS FOR THE ISING CHAIN

1, =1, =+ =t give a complete statistical descrip-
tion of the Ising chain. In particular, we can obtain
in this manner the spin-correlation functions calcu-
lated earlier by Marsh.* We find a complete agreement
between his and our results.

As we have already mentioned in the introduction,
the Ising chain does not exhibit any nontrivial kinetic
behavior. Our investigation of the time-dependent
Green’s functions serves therefore as an illustration of
the general features of the Green’s functions formal-
ism, rather than as a description of any new properties
of the Ising chain.

JOURNAL OF MATHEMATICAL PHYSICS
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Note added in proof: After having submitted this
paper, we came across a publication by C. Blomberg
[*“Some fundamental aspects of many-body problems
in statistical thermodynamics” (Stockholm, 1966)],
where some of our results have been obtained. We
should also mention that some general properties of
Green's functions for the Ising model have been
discussed in the following series of papers: F. Goro-
detzky et al., Phys. Letters 2, 14 (1962); B. G. S.
Doman, ibid. 4, 156 (1963); A. H. Muir, Jr., E.
Kankeleit, and F. Boehm, ibid. 5, 161 (1963).

4J. S. Marsh, Phys. Rev. 145, 251 (1966).
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The kinematical groups are classified; they include, besides space~time translations and spatial
rotations, “inertial transformations™ connecting ditferent inertial frames of reference, When parity and
time-reversal are required to be automorphisms of the groups, and when a weak hypothesis on causality
is made, the only possible groups are found to consist of the de Sitter groups and their rotation-invariant
contractions. The scheme of the contractions connecting these groups enables one to discuss their physical
meaning. Beside the de Sitter, Poincaré, and Galilei groups, two types of groups are found to present
some interest. The “‘static group” applies to the static models, with infinitely massive particles. The
other type, halfway between the de Sitter and the Galilei groups, contains two nonrelativistic cosmological
groups describing a nonrelativistic curved space-time.

L INTRODUCTION

It is almost a fact of everyday life that the laws of
physics are invariant under space and time ‘“‘trans-
lations” ! as well as under spatial rotations. The
homogeneity of space and time and the isotropy of
space were probably recognized a very long time
before being explicitly stated. But there exists another
type of kinematical invariance, expressing the equiv-
alence of a larger class of frames of reference, the
so-called inertial frames, This fact, much less obvious,
was clearly realized for the first time by Galilei.2 In
addition to time “translations,” space “translations,”
and rotations, there is thus an additional set of
transformations, which we will call, in general,

* Present address : Faculté des Sciences, Marseilles, France, Work
supported by the National Science Foundation.

* “Translations” are understood here in a generalized sense:
they do not necessarily commute when large distances are involved.

> G. Galilei, Dialogo sopra i due massimi sistemi del mondo
(Edizione Nazionale, Firenze), Vol. 7, LI, pp. 212-214.

inertial transformations, leaving invariant the laws of
nature. Due to the isotropy of space (valid at nuclear
as well as astronomical dimensions), these inertial
transformations form a three-parameter set, so that on
the whole there is a ten-parameter group of kine-
matical transformations, the relativity group of
nature, or kinematical group ?

But the existence of these inertial transformations
does not suffice to determine the precise structure of
the kinematical group. One still has to tell (i) how the
laws of physics transform under inertial transforma-
tions; (i) if there exists some natural curvature of
space, or, more generally, of space-time. These two
aspects of kinematics are described by the group law.

3 Of course, it might be that such an invariance is only approxi-
mate. In the context of general relativity, for instance, only very
special models of universes possess such a large invariance group.
Indeed, a Riemannian four-dimensional manifold has an isometry
group with ar most ten parameters, and this only when its curvature
is a constant,
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inertial transformations, leaving invariant the laws of
nature. Due to the isotropy of space (valid at nuclear
as well as astronomical dimensions), these inertial
transformations form a three-parameter set, so that on
the whole there is a ten-parameter group of kine-
matical transformations, the relativity group of
nature, or kinematical group ?

But the existence of these inertial transformations
does not suffice to determine the precise structure of
the kinematical group. One still has to tell (i) how the
laws of physics transform under inertial transforma-
tions; (i) if there exists some natural curvature of
space, or, more generally, of space-time. These two
aspects of kinematics are described by the group law.
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mate. In the context of general relativity, for instance, only very
special models of universes possess such a large invariance group.
Indeed, a Riemannian four-dimensional manifold has an isometry
group with ar most ten parameters, and this only when its curvature
is a constant,
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That this is not a trivial question is proved by the fact
that inertial transformations have been thought for
centuries to be pure Galilean transformations, al-
though we now believe them to be pure Lorentz
transformations.* Because the Lorentz group recently
has been brought in question,® it is natural to ask,
Are there any other possibilities? We intend here to
answer this question under very general assumptions.®

II. ASSUMPTIONS AND RESULTS

Our investigation is based upon the use of Lie-
algebraic methods. Supposing the kinematical group
to be a Lie group is a very natural physical requirement,
expressing the supposed continuity of space-time.
We call H, P,, J;, and K; (i = 1, 2, 3), respectively,
the generators of time “translations,” space “trans-
lations,” spatial rotations, and inertial transformations
along the i axis. We now assume:

(1) Space is isotropic, meaning that the infinitesimal
generators transform correctly under rotations, i.e.,
H is a scalar and P, J, K are vectors. In other words,
all the Lie brackets involving the angular momentum
J have their standard form:

{3, H] =0, (1a)
(3,31 =1, (1b)
[J, Pl =P, (1)
I, K] =K, (1d)

where the notation [A, B] = C is a shorthand for
[4:, Bj] = €3Gy

(2) Parity and time-reversal are automorphisms of
the kinematical group. This is a natural assumption
which greatly simplifies the final result, but is by no
means compelling, especially in view of the failure of
parity invariance, and probably, although to a much
smaller extent, of time-reversal, in weak interactions.
However, we stick to this conservative approach
throughout the present paper. From the interpretation
of inertial transformations as “boosts” in a certain
direction, we conclude that their generator K must
be odd under the parity operation II and the time-
reversal ®, while H, P, and J transform in the standard

4 A. Einstein, Ann. Physik 17, 891 (1905).

5 M. Dresden, in Noncompact Groups in Particle Physics, Y.
Chow, Ed. (W. A. Benjamin, Inc., New York, 1966), and private
communication.

8 V. Lalan [Compt. Rend. Acad. Sci. 203, 1491 (1936); and Bull.
Soc. Math. France 65, 83 (1937)] has led an investigation in the
same spirit. However, his hypotheses are very different and much
stronger than ours, since he assumes the relativity group to operate
linearly on space-time and the space-time translations to be an
invariant subgroup.
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way. To sum up, we require the two transformations
nN:{H->H,P—--P,J>J, K-> —K}, (2
0:{H—>~-H,P->P,J—-J,K——-K} (3

to leave invariant the Lie brackets defining the Lie
algebra of the kinematical group. Let us notice that
the combined operation I' = JI®,which may replace
IT and is given by

i -H,P—>-P,J>J, KK}, @

is exchanged with ©® when P and K are interchanged.

(3) The one-dimensional subgroups generated by
the K;’s are noncompact. If this were not the case, the
boost parameter u of a general boost exp (uX,) would
be defined modulo some u, such that exp (4,K;) is the
identity transformation. In other words, a sufficiently
large boost would be no boost at all. This is an utterly
unphysical situation. Notice that we do not require
the same compacity for the one-dimensional trans-
lation subgroups: Indeed the universe might very well
be a closed one. The present hypothesis also may be
seen to be equivalent to the very weak causality re-
quirement that if, in a certain reference frame, two
events take place at the same point, no kinematical
transformation should alter the temporal order of
these events.® However, the equivalence of these two
conditions can only be proved when hypotheses (1)
and (2) have been exploited and a suitable notion of
space-time has been introduced.

Theorem: Under the assumptions that:

(1) space is isotropic (rotation invariance),

(2) parity and time-reversal are automorphisms of
the kinematical groups;

(3) inertial transformations in any given direction
Jform a noncompact subgroup,

then there are eight types of Lie algebras for kinematical
groups corresponding to eleven possible kinematics.
These algebras are:

R1. The two de Sitter Lie algebras’ isomorphic, re-
spectively, to the Lie algebras of SO(4,1) and SO(3,2);

R2. The Poincaré Lie algebra;®

R3. Two “para-Poincaré” Lie algebras, of which one
is isomorphic to the ordinary Poincaré Lie algebra but

7 W. de Sitter, Amsterdam Proc. 19, 1217 (1917); 20, 229 (1917);
C. Meller, The Theory of Relativity (Oxford Univ. Press, London,
1952), Sec. 134; F. Giirsey, in Group Theoretical Concepts and
Methods in Elementary Particle Physics, F. Giirsey, Ed. (Gordon &
Breach Science Publishers, New York, 1964), p. 365 and additional
references therein.

8 E. P. Wigner, Ann. Math. 40, 149 (1939). A. S. Wightman,
“Lectures on Relativistic Invariance” in Relations de dispersion et
particules elémentaires, Les Houches, 1960 (Hermann & Cie., Paris,
1960).
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physically different® and the other is the Lie algebra of
an inhomogeneous SQO(4) group;

R4. The Carroll Lie algebra'®;

Al. The two ‘“‘nonrelativistic cosmological” Lie
algebras;

A2. The Galilei Lie algebra;

A3. The “para-Galilei” Lie algebra®;

A4. The “static” Lie algebra.

While the Lie algebras of class R have no nontrivial
central extensions by a one-parameter Lie algebra,
those of class A each have one class of such extensions.

We start by giving the proof of this theorem. In the
following section, we discuss the physical meaning of
the various Lie algebras by considering their con-
traction scheme, that is, the limiting processes leading
from one to the other of these algebras.

Proof: The very simple and straightforward proof
consists merely in:

(i) writing the unknown Lie brackets as linear forms
on the Lie algebra in our standard basis H, P, J, K;

(ii) taking into account Assumptions 1 and 2;

(iii) imposing Jacobi identity;

(iv) using Assumption 3;

(v) looking for nontrivial central extensions.

We have to examine the five types of Lie brackets
not involving J, that is, [H,P], [P, P], [H, K],
[K, K], and [P, K]. Consider, for instance, [H, P].
This bracket is odd under IT and ©. According to
Eqgs. (2) and (3), it can only be a linear function of K
(Assumption 2). Since it has a vector character, the
bracket [H, P;] will be proportional to K; (Assumption
1), a property which may be written in the form
[H, P] = «K. More generally, when Assumption 2
is used, one term at most survives for each bracket,
and Assumption 1 requires the admissible linear
combinations of generators to be formed only with
the covariant tensors 7, §,;, €;;,. We may finally write

[H,P]= oK, [H,K]= /P,
[P, P] = pJ, [K, K] = uJ, ©)
[P, K] = pH,

® We emphasize that two relativity groups may be isomorphic
but completely different from the physical point of view, since the
basis elements (H, P, J, K) of their Lie algebras have a well-defined
physical meaning and cannot be transformed arbitrarily, except by
scale changes. Moreover, even a given real Lie algebra may have
many interpretations by a change of normalization (for the para-
Galilei groups for instance) or by making the corresponding group
acting on a space which is not 2 homogeneous space of the group.

10 J-M. Lévy-Leblond, Ann. Inst. Henri Poincaré 3, 1 (1965).
See also N. D. Sen Gupta, Nuovo Cimento 44, 512 (1966).

11 M. Hamermesh, Ann. Phys. (N.Y.) 9, 512 (1960); J.-M. Lévy-
Leblond, J. Math. Phys. 4, 776 (1963).
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where the structure constants «, 8, 4, u, p are real
numbers and [P, K] = pH is a shorthand for
[P;, K;] = pdy;H.

Corresponding to the symmetry already noticed of
the automorphisms © and I' = II® under the ex-
change P < K, we remark that the expressions (5)
are invariant under the symmetry S defined by

(©

We now require the Jacobi identity to be satisfied by
all the triples of distinct basis elements of what must
be a Lie algebra. Due to the fact that we already took
into account rotation invariance, the Jacobj identity
is automatically obeyed by all the triples containing
at least one component of J. Of the seven types of
remaining triples [PPP], [PPK], [PKK], [KKK], and
[HPP], [HPK], [HKK], only four need to be con-
sidered if we use the symmetry S. In fact, only three
types of triples give rise to constraints on the structure
constants. The Jacobi identity for [HPK] requires

SH{P K, a4, <> u, p>—p}

op + =0, U]
while for [PPK] and [PKK], respectively, it requires
B —oap=0, (8a)
u+ Ap =0 (8b)

Since the constraints (8) imply (7), we are left with
only these two conditions (8) to analyze. Due to the
peculiar form of the brackets (5), namely, the homo-
geneity of their left-hand sides with respect to each
structure constant, it is seen that any nonzero structure
constant may be normalized arbitrarily by a scale
change, in particular, to unit absolute value. Sign
changes, however, are not always permissible since
they could give different real forms of the same com-
plex algebra and consequently lead to different groups.
Disregarding the question of signs leads to a classi-
fication of the physical algebras in the following eight
types (characterized by their null structure constants):

Class R (‘“‘relative-time” Lie algebras): p # 0. We
have the following types:

Rl. «#0, A 50 [hence, by (8), f# 0, u 5 0).

One recognizes the Lie algebras of the groups
SO(5), S04, 1), and SO(3, 2). More precisely, one
obtains swo groups isomorphic to SO(4, 1), depending
on whether the subgroup SO(4) is generated by J and
P or by J and K. This last group, as well as SO(5),
must be rejected in virtue of Assumption 3. Conse-
quently, one is left with the Lie algebras of the two
de Sitter groups which will be denoted (d4S).

R2. o= 0,13 0 (hence § =0, u % 0).
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TabLE I. Characteristic Lie brackets for the Lic algebras of the various kinematical groups. The terms inside parentheses refer to
the possible central extensions of the algebras. They vanish for the nonextended Lie algebras. To each Lie algebra corresponds one
physical interpretation except for the para-Galilei algebra endowed with two physical interpretations.

ds)1 (P2 (P)3 (87 (N)1 (G2 (G)3 (SH4
de Sitter . Inh. Para- Expanding Oscillating Para-
SO04,1) S0(@3,2) Poincaré SO(4) Poincaré  Carroll Universe Universe Galilei Galilei Static
[H,P] K —K 0 K -K 0 K —K 0 K 0
[H, K] P P P 0 0 0 P P P 0 0
[P, P] J —J 0 J ~J 0 0 0 0 0 0
K, K] —J —J -J 0 0 0 0 0 0 0 0
[P, K] H H H H y:4 H @ ) @) ) @

They are the Lie algebras of the Poincaré group
(P)® and of inhomogeneous SO(4). This last algebra
does not satisfy Assumption 3 and must be discarded.

R3. « 0, 2= 0 (hence 8 # 0, u = 0).

One obtains in that case two Lie algebras iso-
morphic respectively to those of R2, but where the
roles of space translations and inertial transforma-
tions have been exchanged. In opposition with the
case R2, both algebras agree with Assumption 3.
We will denote these groups by (P').

R4, o =0, 1 =0 (hence 8 =0, u = 0).

One recognizes the Lie algebra of the Carroll group
(C)? which satisfies Assumption 3.

Class A (“absolute-time” Lie algebras): p =0
(hence 8 = 0, u = 0). We have also four types in this
class, all of them satisfying Assumption 3.

Al «=0,2#0.

It is shown below that the two Lie algebras of this
type are those of two “nonrelativistic cosmological
groups,” which we feel appropriate to call “Newton
groups” (N).

A2. a0, 1 #0.

This is the Lie algebra of the Galilei group (G).!°

A3. « #0,1=0.

One recognizes a Lie algebra isomorphic to the
Galilei Lie algebra. The situation is similar to cases
R2 and R3 above. The group associated with this Lie
algebra will be called para-Galilei group (G')."*

A4, a=0,A=0.

This is the Lie algebra of what we call the static
group (St) for reasons to be discussed below.

The above classification is summarized in Table I,
which clearly exhibits the Lie brackets defining the
various Lie algebras.

We must now give the proof of the last part of the
theorem concerning the possible central extensions of
these Lie algebras by a one-dimensional Lie algebra.
In fact, this is necessary for constructing the projective
representations of the kinematical groups, repre-
sentations which are of interest for the quantum-

mechanical applications.® Using standard methods,'*
one easily shows that the four algebras of Class 4
each have one type of central extension. They are very
simply characterized: the central element I of the
extended Lie algebra (i.e., the one-dimensional
extending Lie algebra) only appears in the Lie bracket
[P, K] which is zero for the nonextended Lie algebras
(p = 0 defines the Class 4). This element I thus takes
in this bracket the place occupied by the Hamiltonian
H in cases R (see Table I). This property justifies
our classification of possible Lie algebras in two classes
even from a physical point of view since the nonrela-
tivistic groups will be characterized by the property
of additivity of masses. Another justification is pro-
vided by the fact that time will have an absolute
character for every group of Class 4 (see below).

HI. GENERAL PHYSICAL DISCUSSION

There is no need to comment on the appearance in
our classification of the de Sitter, Poincaré, and Galilei
groups. These are well known and have been thor-
oughly studied,”3-1® especially from the point of view
of their role in quantum physics, for the last two ones
at least. The surprising fact is perhaps that there are
other possibilities, which we discuss now.

The Carroll group has already been introduced as a
second nonrelativistic limit of the Poincaré group,®
describing low-velocity transformations of large
spacelike intervals. This explains why we devote a
whole section to the static group and another one to
the Newton -groups.

In this section, we intend to examine the relation-
ships between all the Lie algebras listed in Sec. II
from the point of view of their physical interpretation.
Such an approach is required by the fact that the real
group of symmetry is either the Poincaré group or a
group from which the Poincaré group is an approx-
imation. The mathematical aspect of the relationships
we are looking for is described by the process of

12 y, Bargmann, Ann. Math. 59, 1 (1954).
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contraction, a concept which has been defined
by Inonu and Wigner'® in order to give a precise
meaning to some singular limits encountered when
trying to replace “‘exact” kinematical groups by
“approximate” ones. For instance, the Galilei group
is obtained by contracting the Poincaré group with
respect to the direct product of the rotation and time-
translation subgroups; leaving unchanged the gener-
ators J and H of these subgroups, one substitutes
P — P and K — <K in the Lie algebra and considers
the (singular) limit ¢ — O of the Lie brackets. One is
left with the Lie algebra of the Galilei group. The
physical meaning of the contraction is very simple:
the factor e has affected the generators K and P, so
that the contracted (Galilei) group will describe a
situation where velocities (parameters associated to
K) and space translations (parameters associated to
P) are small. More precisely, taking the light speed as
the unit speed, velocities have to be small compared
to the unit, and spacelike intervals small compared to
timelike intervals. This is why we call such a contrac-
tion a speed-space contraction. On this particular
example, one sees immediately that a given kinemat-
ical group may have, beside its “intrinsic” interpreta-
tion (for instance Newtonian mechanics for the
Galilei group), one or more “approximate” inter-
pretations (the Galilei group is an approximate
symmetry of special relativity but also of a de Sitter
universe),

The contraction of a group always being defined
with respect to a particular subgroup, one can con-
sider four types of physical contractions for general
kinematical groups, since there are four possible
rotation-invariant subgroups of any kinematical
group; indeed, it is easily seen, looking at Table I,
that the only rotation-invariant Lie subalgebras
common to all eight types of kinematical Lie algebras
are generated by (J, H), (J, P), (3, K), and (J). Let
us discuss in turn the corresponding four types of
contraction:

Speed-Space Contraction. It is defined by

P—eP, K— K, (9a)

It is the contraction with respect to the rotation and
time-translation subgroups which leads from the
Poincaré group to the Galilei group.!® This contraction
process corresponds to the passage from relative to
absolute time and maps in a one-to-one correspond-
ence the groups of Class R onto the groups of Class 4:

R1— Al, R2-—>A2, R3— A3, R4->A4. (9b)

e— 0.

13 J. Segal, Duke Math. J. 18, 221 (1951); E. Inénu and E. P.
Wigner, Proc. Natl. Acad. Sci. U.S. 39, 510 (1953); 40, 119 (1954);
E. Saletan, J. Math. Phys. 2, 1 (1961).
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Speed-Time Contractions, One puts
H—>eH, K— K, (10a)

contracting with respect to the three-dimensional
Euclidean group. The physical interpretation of the
contracted group is obtained in considering only low
velocities and large spacelike intervals. This contraction
leads from the Poincaré group to the Carroll group.?
According to its very definition, such a process only
yields groups describing intervals connecting events
without any causal connection, hence without much
physical applications. The mapping corresponding
to this contraction is

R1— R3, R2—> R4, Al — A3,

e—0,

A2 — A4.
(10b)

Let us notice that under a speed-time contraction,
space intervals become absolute.
Space-Time Contraction. By choosing

P-—>eP, J—eH, (11a)

one contracts with respect to the group of rotations
and inertial transformations (Lorentz group). Physi-
cally, this means that we consider very small units of
space and time. A group obtained in this way describes
local transformation properties, but, contrary to the
preceding contractions, for arbitrarily large inertial
transformations. The space-time contraction realizes
the following mapping:

Rl—>R2, R3—> R4, Al —>A2, A3 - A4.
(11b)

€e—0,

Because of the local character of the contracted
groups, it seems natural to call R1, R3, A1, and A3
cosmological groups and their contracted groups R2,
R4, A2, and A4 local groups.

Before examining the fourth kind of contraction,
we will refer the reader to Fig. 1, where the eight
types of Lie algebras have been put at the eight
vertices of a cube, the edges of which describe the
contraction processes we have just discussed. Each
upper face of the cube is transformed under a given
type of contraction into the opposite face.

General Contraction. Here we put

P—>eP, H—eH, K— K, 12)

contracting with respect to the rotation group which
alone is unchanged.

This contraction combines the features of the pre-
ceding ones and will lead to a description of local and
small inertial transformations. As we will see, it is a
rather drastic operation from a physical point of view.

e—0,



1610

e SPeed-time contrg

w8t \

Fic. 1. The contraction scheme for the relativity groups.

Relative-time groups: as), (), (P), (C).
Absolute-time groups:  (N), G, (), (Sn.
Relative-space groups:  (dS), (N), (P), (G).
Absolute-space groups:  (P’), (@), (0), (SH).
Cosmological groups: @s), V), @*), (@)
Local groups: (09} ), ©), (S1).

Remark: The effect of the symmetry S of Eq. (6) is equivalent to a
symmetry of the cube with respect to the plane containing the
vertices (dS), (N), (C), and (S1).

All groups are contracted in this way into the static
group.

We notice that geometrical concepts are naturally
associated to each kind of contractions. For instance,
the group obtained via a speed-space contraction
describes space-time properties in the neighborhood
of a worldline. This is due to the fact that the con-
traction is made with respect to the subgroup which
leaves invariant a given worldline. On the other hand,
space-time contractions are associated with events,
points in space-time.

We may now state the main result of this section:
the eight possible types of kinematical Lie algebras
may all be obtained from one among them (R1) by a
suitable sequence of contractions!* (i.e., a contraction
in the sense given by Saletan®). The detailed con-
traction scheme is much better understood by looking
at Figs. 1 and 2 than by reading a verbal description.
We note immediately that the Poincaré group is a
contracted group of the two de Sitter groups only; this
property is essential, since it follows that the only
possible exact symmetry groups compatible with our
assumptions are the Poincaré and the de Sitter groups.
We examine in detail this statement in our conclusion.

The cube of Fig. 1 enables us to understand the
relationships between all the groups we obtained and
to find their interpretations as approximated sym-
metries of the Poincaré or of the de Sitter symmetries.

(a) The groups (P’) and (C) are obtained respec-
tively from (dS) and (P) via a speed-time contraction.
_“_C_o—n\;rsely, the eight possible kinematical Lie algebras may
be considered as “deformations” of the static Lie algebra. For a

discussion of this concept see M. Lévy-Nahas, J. Math. Phys. 8,
1211 (1967).
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Thus they describe the transformation properties of
large spacelike intervals, forbidding causal relations
between events. The physical interest of these groups
then is very much reduced. One may notice that, for
these two groups, [H, K] = 0 (see Table 1), which
means that inertial transformations do not act
effectively on time translations; this is consistent with
the large spacelike character of the considered inter-
vals, but underlines the unphysical nature of the
groups, since ordinarily an inertial transformation
followed by a time translation yields a space trans-
lation (waiting a certain time after boosting an object,
one finds it displaced!). The same considerations
could seem to apply to the para-Galilei and static
groups. However, we show that these groups are
endowed with special significance.

(b) The para-Galilei group (G’) can be obtained
from (dS) in the following way:

P—>eP, H—>eH, K— €K,
and so describes a situation where timelike and
spacelike intervals are reduced but the velocities are
completely negligible, that is to say, a situation of a
static “‘de Sitter”” universe. Looking at the cube of
Fig. 1, one can expect an analogous interpretation for
the static group relative to the Poincaré group but the
fact that this group can be reached directly through a
general contraction provides it with even more
general properties.

(c) The groups (N) acquire an obvious meaning:
they are obtained from the de Sitter groups by per-
forming a speed-space contraction. Thus they describe
the low-velocity transformations of the universe at
large endowed with an absolute time, hence their de-
nomination as “nonrelativistic cosmological groups.”

(d) It is a remarkable fact that, without any
additional hypotheses, each of our groups can be
considered as a group of transformations acting on
space-time coordinates. Indeed, it results from our
basic assumptions that rotations and inertial trans-
formations automatically form a subgroup of any
kinematical group; this is seen on Table 1, where J
and K clearly form a Lie subaigebra. As a consequence,
there exists a four-dimensional homogeneous space
for each kinematical group, namely, its quotient by the
six-dimensional subgroup of rotations plus inertial
transformations. This inhomogeneous space may be
identified with the manifold of the space-time trans-
lations!® and gives a purely group-theoretical definition
of space-time itself. From the group law, one immedi-
ately obtains the formulas defining the action of the

e —>0,

15 Note that the space-time translations do not form a subgroup
in general. It is a subgroup in the Poincaré, Carroli, Galilei, and
static cases. This subgroup is, in fact, an invariant subgroup.
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F1G. 2. Top of the cube of Fig. 1 (detail).

group on space-time coordinates. This is where we
see that time intervals are not invariant under inertial
transformations for type R groups, while they are for
type A4 groups. Indeed, this results directly from the
presence or absence of the time-translation generator
H in the derived algebra, i.e., in the “right-hand side”
of the Lie brackets (see Table I). Of course, we have
no guarantee that the group acts effectively on
space-time, i.e., that every group element induces a
nontrivial transformation. As a matter of fact, for the
static group (and the para-Galilei group as well),
inertial transformations do not act on space-time;
this results from the commutation relations [H, K] =
0, [P, K] = 0 (Table I). But it is an advantage of our
approach not to have considered beforehand the
kinematical groups as effectively acting on space-
time, since this would have eliminated the static
group, for instance, despite its real physical content.
" (e) By identifying space-time with a homogeneous
space of the Lie algebra, we have excluded some other
possibilities offered in making the group acting on the
closure of a homogeneous space. The group proposed
by Dresden® in his model is claimed to fulfill all our
three assumptions. In any case space-time cannot be
identified as a homogeneous space of the Dresden
group.
IV. THE STATIC GROUP

We saw that the static group is reached from any
of the other kinematical groups by performing the
whole sequence of physical contractions in any order,
or the general contraction directly. This somewhat
obscures its possible physical meaning.

The interpretation of the static group appears most
clearly when we relateit to its closest physical neighbor,
the Galilei group, by a slight extension of our con-
siderations on the contraction scheme. It has been
mentioned that, in quantum physics, the state space
of a system invariant under a group of transformations
is a representation space for a projective (i.e., up to a
factor) representation of the group, that is, a represen-
tation of a central extension of the group by a one-

parameter “phase group.” Contrarily to the de Sitter
and Poincaré groups, the Galilei and static groups
have nontrivial extensions. The Lie algebras of the
extended groups differ from those of the original
group by the addition in the Lie brackets of scalar
terms, multiples of the phase-group generator 1. As
indicated in Table I, for kinematical groups, such
terms can always be reduced so as to appear only in
the commutator [P, K]. For the Galilei group, it is
most important that only the nontrivial projective
representations have a physical interpretation; the
vector representations do not allow for any sensible
notion of localizability.'® The phase generator [ in this
case physically appears as the mass operator. Since
the mass obeys a superselection rule,'*1?2 we must
consider systems with a definite mass value, say m.
Within their state space, one has

I=ml, (13)
so that the commutation relation
[Pi’ K:i] = 51';'1 (14)

is nothing but the canonical commutation relation
(7, 0,1 = 6,’5' (15)

between the momentum P and the center-of-mass

position operator Q = (1/m)K. Taking Q as a basis

vector of our Lie algebra instead of K, we have to
rewrite the Lie bracket involving the Hamiltonian

(H,Q]=L1p, (16)
m

which is just the velocity operator. But then we see
that by taking the limit m — oo we obtain a new Lie
algebra with the property (15) and

[H, Q] = 0. (17)

This is just the Lie algebra of the extended static
group! In more technical terms, we have contracted

¢ E. Inénu and E. P. Wigner, Nuovo Cimento 9, 705 (1952); A.
S. Wightman, Rev. Mod. Phys. 34, 845 (1962).
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a central extension of the Galilei group into a central
extension of the static group with respect to the
rotation and space-time translations subgroup; that is
taking the limit

K—eK, I—el, (18)

If we now point out that, for the same reasons as in
the Galilean case (lack of localizability), the vector
representations of the static group have no physical
meaning, the interpretation of the group is quite
clear. We have just shown that this group represents
“infinitely massive” systems. One sees how, due to
the m — oo limit, the position operator of the system
now commutes with the Hamiltonian (17), instead of
giving the velocity operator (16). This, of course,
means that the system cannot move—whence the
name of the group. The key point is that such a static
system is invariant not only under the Euclidean
motion group and time translations; the additional
invariance under pure Galilean transformations,
although broken by the infinite-mass limit, leaves its
imprint by ensuring the existence of a position oper-
ator, endowing the system with nice localization
properties.

It may be interesting to give the group law. Calling

(b, a,u, R) = e*He*PeKend (19)

the generic element with b a time translation, a a space
translation, u a pure static inertial transformation,?
and R a rotation, one easily computes the multiplica-
tion law

(', a',u', R)b, a,u, R)
= (b’ + b,a’ + Ra,u’ + R'u, R'R).

€ — 0.

(20)

The peculiar feature of this law, as opposed to its
Poincaré and Galilei counterpart, is that the pure
inertial transformations do not act on the space-time
(identified to the space-time translations subgroup).’®
Anysystem is at restin any inertial reference frame and
the inertial motions are no motion at all.

Finally, we can construct the irreducible unitary
projective representations of the static group, using
the standard “little group” technique.® Taking as our

17 Before the contraction, the parameter u is linked to the velocity
v of the pure Galilean transformation by u = mv. The contraction
process amounts to taking the limits m — 00, v — 0 with u fixed.
18 However, for the nontrivial central extensions of the static
group, the inertial transformations act on the phase group. We have

©,v,a’,u, RO, b,a,u, R)
=@ +0+v: Ra b +ba+ Raun <+ Ry RR),

where 0 is the generic element of the phase group (a real number).
It is very amusing to notice that such an extension of the static
group is isomorphic to the (trivial) extension of the Carroll group.
The isomorphism is simply realized by exchanging the roles of the
phase group and the time-translation group (H <> I).

H. BACRY AND J.-M. LEVY-LEBLOND

representation space the space of (25 + 1)-component
square-integrable functions in momentum space, the
Lie-algebra representation is

H = E = const,

P=p,

K=iV,

J=—ipxV, + 8,
where the three matrices S; (i = 1, 2, 3) generate a
(25 + 1)-dimensional representation of the rotation
group. In (21), the generators have been redefined so

as to be Hermitian, having been multiplied by (i).
We see that:

@n

(1) a “static elementary system” can possess a spin,
as can Galilean and relativistic systems;

(2) the energy E of a static system is a constant,
independent of its momentum p;

(3) under a pure inertial transformation (u), the
momentum of a static system changes according to
P—ptu

All this is perfectly in keeping with the intuitive
picture of a static system as having a constant energy,
rotational degrees of freedom, and being able to ex-
change momentum in arbitrary amounts while its
energy does not change. Such results obviously would
not obtain if one only considered Euclidean invariance.

As an application, it is amusing to consider the
various static models of quantum field theories, such
as the Chew-Low model.’® One easily sees that they do
have the static group as an invariance group. It may
be noted that Feynman had proposed to modify the
Chew-Low model so as to take into account Galilean
invariance.?® It has been pointed out elsewhere?! that
this cannot be done consistently because of the
Galilean mass superselection rule. Accepting, how-
ever, the intrinsically static nature of the model, one
need not introduce additional interaction terms, as
proposed by Feynman, to have a model with some
remnant of Galilean invariance, namely static in-
variance. Anyway, the new terms had the effect of
badly spoiling the agreement between the predictions
of the standard model and the experimental results.®

V. THE NEWTON GROUPS

The Newton groups are characterized by a non-
vanishing Lie bracket [H,P], proportional to the

19§, S. Schweber, Introduction to Relativistic Quantum Field
Theory (Row and Peterson, Evanston, 1961), Chap. 12 and original
references therein.

20 R. P. Feynman, Proceedings of the Third Annual Conference on
High Energy Nuclear Physics, Rochester, 1952 (University of
Rochester, 1953), p. 87.

21 J -M. Lévy-Leblond, Commun. Math. Phys. 4, 157 (1967).

22 E, M. Henley and M. A. Ruderman, Phys. Rev. 90, 719 (1952).
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boost generator K. Depending on the sign of the
coefficient « [see Eq. (5)], we have one of two possible
real forms for the Lie algebra. We choose to write

[H,P] = £(1/79K, 22)

where 7 is a characteristic time, which might be
chosen as the natural time unit, but which we prefer
to keep apparent in our expressions. Depending on the
sign in (22), we will have a group N, or N_.

In order to acquire some familiarity with the new
groups, let us first compute the group law by direct
exponentiation of the Lie brackets. We denote the
generic element by

(b, 8, v, R) = tHevPevKend (23)

(the vector n defines the axis and angle of the rotation
R). Multiplying together two such elements, re-
ordering the product in the same normal form (23)
by repeatedly using Baker-Hausdorff formula and the
Lie-algebra properties of the infinitesimal generators,
we obtain

(b',a', v', R")(b, a, v, R)

= (b’ + b, cosh b a’ 4 7sinh b v 4+ R'a,
T T

cosh b vy 4+ 1 sinh b a’ + Ry, R’R) for N,
T

T T

(24a)
(b' + b, cos b a’ + rsin Ilv’ + R'a,
T T

cos b v 4+ I sin b a’ + Ry, R’R) for N_.

T T T
(24b)

The group can be considered as a group of trans-
formations of the space-time manifold. Under a
general transformation (b, a, v, R), the coordinates
(x, ) of a physical event are transformed according to

x’=Rx+w-sinh—t+acosh~t,
T T
f ,
V=t4b, or N,, (25a)
or

' .t t
x' = Rx 4+ vrsin-+ acos~,
T T

Y =1+b, for N_. (25b)

Notice that, as in the de Sitter case, these are nonlinear
transformations; more precisely, the new spatial
coordinates do not depend linearly on the time. This
is in direct contrast to the Poincaré and Galilei groups.
Physically, it means that inertial motions, obtained by
subjecting a motionless material point (located at the
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origin x = 0 for definiteness) to a pure inertial
transformation, are no longer uniform motions, but
are given by

P |
x =vrsinh~ for N,
T

(26a)
or

.t
x =vrsin~ for N_.

T

(26b)

Inertial motions thus are either exponentially accel-
erated (NV,) or oscillating (N_). Correspondingly, N,
and N_, respectively, describe expanding and os-
cillating universes.

It seems, then, that both groups have features very
much like the de Sitter groups” from which they
derive by speed-space contraction, SO(4, 1) leading
to N, and SO(3, 2) to N_. In other words, despite the
nonrelativistic limit, the effects of space-time curva-
ture are present, due to the fact that we are still
considering the universe on a large scale of time.
These effects disappear when we take the local limit,
i.e., - co, which immediately yields the Galilean
formulas, as expected, for both N, and N_. Notice
that in such a universe there is an absolute time: as in
the Galilean case, simultaneity of two events is
preserved by an inertial transformation. We see, then,
that the groups N may be interpreted as describing
the kinematics of nonrelativistic universes at large.®

. We propose to call “Newton groups” these nonrela-

tivistic cosmological groups which bear to the
Galilei group the same relation as the de Sitter groups
to the Poincaré group.

It is of interest for possible applications to quantum
physics to construct the unitary irreducible representa-
tions of the Newton group. As in the Galilei and static
cases, only the projective representations may have a
physical meaning, for lack of a proper localizability
notion for vector representations. There are two
invariants of the extended Lie algebra, which we
write:

Q) =2IH—P* & (/K2 = 21U for N,, (27a)
0, = (IT — P x K)? = I2Se, (27b)

The interpretation is very similar to the Galilean case:
I appears as a “mass,” obeying a superselection rule;
from @, one defines an “internal energy”” U and from
0, a “spin” S, The most novel feature of a “particle”
described by such a representation is that its energy is

2 A ‘perfect!y consistent, nonrelativistic, Newtonian model of
expanding universe has been described by C. Callan, R, H, Dicke,
and P. J. E. Peebles, Am. J. Phys. 33, 105 (1965). We do not expect it,
however, to be invariant under our nonrelativistic cosmological
group, since this group, as the de Sitter group from which it comes,
certainly describes an empty universe, contrarily to the cited model,
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no longer invariant under a translation, as one sees
directly in Eq. (22). Also it is amusing to notice that
in the N_ case the kinetic energy of the particle, that
18,

T=H-—U-=1/2[[P? 4+ (1/75K?], (28)

is quantized, which is not surprising in view of the
“compactness” of the corresponding universe. The
oscillator levels have a separation

SE = ki, (29)

in agreement with the uncertainty principle, since 7
may be thought of as the “lifetime” of this oscillating
universe. Of course, JF is absurdly small (0F ~ 2 x
10~33 eV for 7 ~ 10" yr).

VI. CONCLUSIONS

We think it rather remarkable that the very simple
conditions which we require so severely constrain the
possible relativity groups that we found only a small
number of more or less degenerate cousins of the
de Sitter group. Besides the known de Sitter, Poincaré,
and Galilei groups, there are two physically inter-
esting cases. The static group is appropriate to the
description of the various static models where the
studied particles are supposed to have infinite masses.
The Newton groups present features quite close to
those of the de Sitter groups, but in a nonrelativistic
situation, so that they are perhaps closer to one’s
intuition and may be used as a simple model to
understand some effects of space-time curvature.

H.BACRY AND J.-M. LEVY-LEBLOND

The present work could be extended by relaxing
the conditions that parity and time reversal be auto-
morphisms of the relativity groups. This can be done,
but the number of possible cases become very large
and many of them seem difficult to interpret in physical
terms.2* This is why in this paper we have presented
only the simplest approach.

It seems important, in our opinion, to recall in the
conclusion one of the main consequences of our
theorem: With the requirements of kinematical
rotation, parity, and time-reversal invariance, there
exists only one way to ‘‘deform” the Poincaré
group, namely, in endowing space-time with a certain
curvature.®

ACKNOWLEDGMENTS

The authors are grateful to F. Lur¢at and J. Nuyts
for stimulating discussions and their interest in this
work. One of us (H.B.) wishes to acknowledge the
hospitality extended to him at The Institute for
Advanced Study. Part of this work was done while the
other author (J.-M.L.-L.) benefitted from the
hospitality of the University of Rochester.
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(N.Y.) (to be published)]. See also Ref. 9.
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Paper II of this series [Paper I in J. Math. Phys. 8, 1931 (1967)] is concerned with a general study of
the degenerate representations. The explicit expressions for the “raising” and ‘‘lowering™ functions
a¥(p, q, 1), and bi(p, q, A), i = 1,2, 3, 4 are found. The three Casimir operators C,, C;, and C, depend on
only two complex parameters 4 and B, a fact reflecting the degenerate nature of the representations under
study here. The finite representations are studied first, and thus provide a proof for the degenerate part of
Theorem 2, Paper I. The unitary representations are studied next, and we find that there are fourteen
classes of degenerate unitary irreducible representations. There are two continuous series, ten discrete
series, and two series which depend on one discrete and one continuous parameter. The degenerate part
of the D+ series is studied, and thus provides an explicit demonstration of Harish-Chandra’s theorem.

1. DEGENERATE REPRESENTATIONS

In Paper II of this series we present a general study
of the degenerate representations. We find that there
are fourteen classes of degenerate unitary irreducible
representations: ten are in the discrete series, two are
in the continuous series, and two belong to neither.
We adhere to the notations used in Paper 1.

We begin by making some general remarks about
irreducible representations of SU(2, 2). These repre-
sentations may be degenerate or nondegenerate,
finite or infinite. We classify them according to the
shape of their p-A diagrams which were introduced
in Paper 1. There are five cases to be considered.

Let p=j+k, g=j—k, and |p,q,1) be an
irreducible representation of SU(2) x SU(2) x U(1)
contained in an irreducible representation of SU(2, 2).
For fixed p, we have five cases, as shown in Figs. 1-5.

Figures 1(a), 1(b), and 1(c) are finite-dimensional,
and, from Theorem 1,2 1(a) and 1(b) are degenerate,
while 1(c) is nondegenerate. Figure 1(d) is infinite-
dimensional, since p is not bounded from above.
Cases 2-5 are all infinite-dimensional. From Theorems
I3 and 14, we see that unitary irreducible representa-
tions in the D~ series are in 2(a) and 2(b), and those
in the D+ series are in 3(a) and 3(b). Figures 2(a)
and 3(a) are degenerate, while 2(b) and 3(b) are
nondegenerate.

We next consider an arbitrary degenerate repre-
sentation, i.e., not necessarily a degenerate unitary
irreducible representation in the discrete series.
Equations (I4.10) and (I4.11) are now recursion
relations, since we may drop the labels o, p. These
equations can be solved in a straightforward manner.

1T. Yao, J. Math. Phys. 8, 1931 (1967). Hereafter referred to as
Paper I.

% Hereafter, the equations and theorems of Paper I are prefixed by
a Roman numeral 1.

Letp =j+ k,q =j — k,andwewritea,(p, q, 1) =
a(j, k,2),b(p,q, %) =b,(j,k,2),i=1,2,3,4. Let
Po = minimum value of p in an irreducible repre-
sentation of SU(2, 2). Then

a4(]’oa q, )= b4(Po,q, A)=0. (1.1

Equation (I4.10) now gives (p, > 0)

2p(po + g9 + D(po — q + 1)(py + g + 2)
X (po — q + 2)ai(py, 4, 4)
= po(po + DCy — 29C,4
—popo + D{po+a+ 12+ 2)Xpp—q + 2+ 2)
+ 2(py — D(po + 2)}. (1.2)
For py >0, let Cy = 2(py + 2)(po — 1) + 42, C3 =
Po(po + 1NA; then Eq. (1.2) becomes
ay(po, g, A)
_ (Po + DI(g — A)* — (po + 4 + 2)°]
20— g+ DPo—q+2)Po+a+DPpe+q+2)
(1.3)

Similarly, from Eq. (I4.11), we have

b¥(pos 4, A)
— (po + DI(g + A)2 —(po— A+ 2)2]
2po—q + D(Po—a+2)(po+ g+ D(po+9+2)
(1.4)

where |¢q| < p, and A = Linteger if p, = integer, or
A = +half-integer if p, = half-integer. We see also
that, starting with Egs. (I4.1) and (I4.2), Eqgs. (1.3) and
(1.4) are also valid for p, = 0.

For p-A diagrams of Figs. 1(a), 2(a), 3(a), and 4,
the solutions of Eqs. (I4.10) and (I4.11) are particularly
simple. All the a%(p,q, 4) and b%(p,q, 2) for p > p,
are uniquely determined by Eqgs. (1.3) and (1.4),
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and we have

a¥(p, 4, )
_ =P+ D+ po+2(g— A’ —(p+21+2)]
p—q+Dp—q+2(p+q+Dp+q+2)
(1.5)

bi(p, 4, H)
_ (=Pt D@+ p+2Ug+ A —(p—1+2)]
Hp—q+D—q+2(P+q+D+q+2)
(1.6)
Equations (1.5) and (1.6) were first obtained by
Murai.? They are valid only for a subclass of degener-
ate representations, namely, those whose p-1 dia-
grams are as in Figs. 1(a), 2(a), 3(a), and 4. We know,
for instance, that for degenerate representations of
the type of Figs. 1(b) and 1(d), 4?(p,q,4) and
b¥(p, g, A) in general do not have the form (1.5) and
(1.6), since the left and right boundaries of these
representations give additional conditions, i.e.,

aiz(p’q’}')=03 i=2’3;41

on the right boundary, and b}(p, ¢, 1) = 0,i = 2, 3,4,
on the left boundary.

However, we observe (or through a direct lengthy
calculation) that if we replace p, by B, where B is a
complex number, in Egs. (1.5) and (1.6), then, together
with Eqs. (I4.6)-(14.9), we may write

as(p, 4, )
_(p+1=B(p+2+Blg— A’ —(p+14+2)]

C Mp—q+Dp—g+Dp+a+De+a+2)
(1.7a)

a3(p, g, A)
_(B—9)B+q+Dg+i+1)*—(p+1—A4)]
Ap—qp—q+Dp+q+D(p+qg+2)
(1.7b)

ai(p, 4, )
_B+a(B—q+D(g—A=1)=(p+1+ 4]
p+)p+q+Dp—g+)(p—q+2)
(1.7¢)
(p—BXp+B+Dl(g+ 4 —(p— 7
Ap—p—a+Dp+a)p+q+1)’
(1.7d)

ai(p,q,%) =

bi(p, g, 4)
_(@+1-BYp+2+B)g+ A~ (p—1+2)
4p—qg+Dp—q+2)p+g+Dp+q+2)°
(1.8a)

3 Y. Murai, Progr. Theoret. Phys. (Kyoto) 9, 147 (1953).
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bi(p, g, 2)

_B=—gB+q9+Dlg—2+1)*—(p+1+ 4)°]
dp+g+Dp+qg+Dp—q)p—gq+1)
(1.8b)

bi(p, 4, 4)
_B+B—g+Dg+A— 1 —(p+1—A)
4p+9p+a+Dp—g+DP—q+2)

(1.8¢)
(P—B(p+B+Dig—4° -+
dp—g)p—q+Dp+a)p+q+1)

(1.8d)

Substituting Eqs. (1.7) and (1.8) into Egs. (14.1)-

(I14.3), we find the three Casimir operators (which are
independent of p, ¢, and 1)

k4

bi(p,q,%) =

Cy=2(B — 1)(B +2) + 42, (1.9)
Cy = AB(B + 1), (1.10)
C,= }A4% — A(B* + B + 1). 1.11)

It is interesting to note that C,, C;, and C, depend on
only two parameters 4 and B, a fact reflecting the
degenerate nature of the representations considered
in this paper.

For completeness we also give the eigenvalues of F;,
although for degenerate representations they are
really redundant for a complete labeling of states.
From Eq. (I4.5) we find

«=Ag(p+1)— BB + 1)
+ 3@+ 12 +¢— 11, (1.12)

where « is the eigenvalue of F; for the state |p, ¢, A).

Finally, in conclusion to this section, it can be
shown explicitly that Eqgs. (1.7) and (1.8) satisfy the
27 relations in Appendix A of Paper I.

2. DEGENERATE FINITE IRREDUCIBLE
REPRESENTATIONS

We turn our attention first to the degenerate finite
irreducible representations. Comparing Eqgs. (1.9)-
(1.11) with Eqgs. (15.2)-(I5.4), we see that there are
two solutions:

(a) km=0’ B=Po =jm’ A= —(}'m+2)’

or
jm=0, B=py=kn, A=I,+2.

To be specific, we consider the case k,, = 0 (the
case j,, = 0 is similar). Then, on the right boundary
PH+A=po+ An=jm+ Aus 4 =jm, Egs. (1.72)-
(1.7c) give a2(p, g, 1) =0, i = 1,2, 3, and Eq. (1.83)
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(a) $

[T\
/

(c)

(d)

FiG. 1. A is bounded on both sides.
gives
b% (P=Po+ smsq9}“= lm_sm)
=bl(p= Amsq = jm> A =jn) =0,
where s,, = A, — j, — k. Similarly, on the left
boundary p — A =py— Ay = ju = > 4= —jm>
Egs. (1.8a)-(1.8c) give b%(p,q,4) =0, i=1, 2, 3,
and Eq. (1.7a) gives
a% (P=P0 + Sm,q’l = _}‘m + sm)
=& QP ="%9= ~Jm> = —Jm) = 0.
The allowed values of p are p = p,, po+ 1, po +
2, ,po+ 8, = A,. The p-A diagram of this case
is given by Fig. 1(a).
(b) Am =jm + km (sm -
B=j,+k,+1,

Zm _jm —k,=0),
A4 = _(Jm - km)

Here on the right boundary p — A=p,, — 1, =
Jm + km — A, =0, 9 =j, — k,, Egs. (1.7b)-(1.7d)
give a?(p,q, A) =0, i =2, 3, 4, and Eq. (1.7a) gives
@ P =jn+kn, g, A= 24,)=0. Similarly, on the
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AN D

FiG. 2. A is bounded on the right.

(a)

(N

FiG. 3. A is bounded on the left.

FIG. 4. A is bounded: —o0 < 4 < 4.

FiG. 5. A is fixed. Figure 5(a): p — A = const; Fig. 5(b):
p + A = const.

left boundary, p+ A=p, —4,=0,9=—(j, —
k,), Egs. (1.8b)-(1.8d) give b}(p,q,1) =0, i=
2,3, 4, and Eq. (1.8a) gives

Bp=jun+kng A=—1,)=0.
The allowed values of p are

=,jm_kml’ljm_kml + 19“.’jm+km'

The p-4 diagram of this case is given by Fig. 1(b).

The Young diagrams associated with the finite
degenerate representatlons have already been given in
Theorem Il. The problem of decomposition of a
finite degenerate representation of SU(2,2) into
irreducible representations of

SU22) x SU(2) x U(1)
was discussed in Theorem 12.

3. DEGENERATE UNITARY IRREDUCIBLE
REPRESENTATIONS

We now study degenerate unitary irreducible
representations. Equations (1.7) and (1.8) must
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satisfy the unitary conditions Eqs. (I6.4) and (I6.5):

ai(p, 4, A), ai(p,q,%), bi(p,q,2), bi(p,q,2) <0,
(3.1)
bi(p,q.2) > 0.
(3.2)

It is most convenient to proceed systematically
following the p-i diagrams listed in Sec. 1, since
otherwise it is rather easy to miss some of the repre-
sentations.

az(p, 4, 4), ai(p. q,2), bi(p,4q, ),

(1) Here we consider those unitary representations
whose p—2 diagrams are of the form given in Fig. 1(d).

On the right boundary p — A = p, — A, ¢ = 4o,
a¥p,q,4) =0,i=2, 3, 4. Equations (1.7b)-(1.7d)
give us three relations:

(Go+2+s+DP=(@+s+1—4> (33
(Go—24—s—1P=(po+s+ 1+ 4> (34
(g0 + AP = (py — 4)%, (3.5)

where p = p, + 5, A = Ay + s, from which we get
4o = Po, (3.6)
go = —A. 3.7
By considering Egs. (1.7b) and (1.7¢) for fixed ¢

and 4 but increasing p, we see that the unitary condi-
tions (16.5) require

B—9B+q+1)<0, 3.8)

(i) For the principal series we get
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B+pB—-qg+1)L0, (3.9
from which we obtain
@B+ @ (3.10)

There are now four cases to be considered:

(i) B= —% & ip, where p is real, p > 0. Here
Po = integer or half-integer.

(i) B=o0, —1 < 0 <0, and p, = integer only:

(iii) B = —}, p, = half-integer [p, = integer has
already been included in (ii)].

(iv) B =0, or B= —1, and p, = integer.

Following the terminology used in the homogeneous
Lorentz group, we call case (i) the principal series,
and case (ii) the complementary series. Cases (iii)
and (iv) are in the most degenerate discrete series.

Referring back to Egs. (1.7d) and (1.8d), which gives
us

ai(po, 9, ) = b3(po, g, 1) = 0,

(g + AP = (po — 43, (3.11)
(g — AP = (po + D™ (3.12)
There are two solutions:
A=p,, qg=—1, (3.13a)
or
A= —py, gq=2A4 (3.13b)

Now we are ready to list all the degenerate unitary
irreducible representations whose p-4 diagrams are of
the form given in Fig. 1(d).

A*=p; p=0,4%1,%2- %,

B=—%}+ip, p>0.
(a) A=Po,
C2=p(2)_2pz_§;
C; = ‘—Po(P2 + D,
Cy=1ps + ps(p* — D)
P =po p=p+1 P=pots
=200 K q—=AL<2p) —2po—1<g—2<2p, + 1 =20 —s<q— A< 2pp+s) ), (3.14)
g+4=0 -1<g+4<L1 —sLg+iLs

where s =0,1,2,3,"+"; —2pp— s <qg— A< 2py+smeans g — A = —2py — 5, —2py — s + 2, —2py —
s+4,,2p0+s5; —s<g+A<smeans g+ A= —s, —s +2,---,5 Of course, —p < g < p always.
(b) A= —po,
Co=py—2p" — 4,
C3=P0(P2+ %)’
Ci=1p + pilp* — 9,

P =Do P=pots
—2py < g+ 2L 2p, —2pp—5<q+ AL 2+ (3.15)
g—2A=0 —s<Lg—-A<s
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(ii) For the complementary series we get
A*=p}, p,=0,1,2,3,---,
B=o —-1<a<0.
(@) A = po,
Cs = p; + 2(c — 1)(o + 2),
C; = poo(o + 1),
Cy = 1ps — pi(a” + o + 1).
The decomposition of this unitary representation into irreducible representations of SU(2) x SU(2) x U(1)
is the same as in (3.14), the only difference is that here p, = integer.
(b) A= —p,,
Cy = ps + 2(0 — 1)(0 + 2),
Cs = —poa(o + 1),
Ci = 1Py — po(0® + o + 1).
The decomposition is the same as in (3.15).
(iii) For the most degenerate discrete series (p = half-integer) we get

A*=p5, pp=58%4%
B=—}
There are four cases:
€)) A=py, pp=%%%""",
Co=p— 4%
Cs = —1Do,

Cy= {ps — ips-

The three Casimir operators depend on one discrete parameter p, only, and the unitary representations under
study are said to belong to the most degenerate discrete series.

We already know that on the right boundary p — A =py — 4, =0, g = ¢y = —4 = —p,, a*(p,q, 1) =
0,7 = 2,3, 4. Similarly, on the left boundary p + A = p, + },9 = —4}, and Eqgs. (1.8b)-(1.8d) give b¥p,q,%) =
0,7 =2, 3, 4. Therefore, ¢ is always bounded from above by —4,g = —p, —p + 1, —p + 2, -+, —1, where
P = po + § is a half-integer.

P =D p=p+1
=—y qg=—y , ==+ 1)
A=y Jy=1Z1Z<y+1 Ai=p,
P=po+s
g=-y , g=—(@o+1) <oe), (3.16)

—s+y<A<s+y —s+p+tL<Ai<s+p,—t
wherey = 4,8, ", pe,t=1,2,---,5,s=1,2,3,:--.

(b) A=po, pp=%%3% """

This case is the mirror image of (a); we merely change ¢ - —¢q, A — —1. On the left boundary p + 1 =
Po— 4 =0,9= —qy=py, b}(p,q,4) =0, i = 2, 3, 4. On the right boundary p — 1 =p, + 4, ¢ =}, and
a(p,q,2) =0, i = 2,3, 4 Here q is always bounded from below by 4, ¢ = 4,3, -, p:

P =Po p=p+1
9=V qg=7 , 9=P+1
A=—y) —y—1<1<—y+1 A= —p,
P=pPots
=7 , g=pot+? el (317)
—S$—y<A<s—y —s—p+t<A<s—p,—t
where y = 4,3, - ,pp, t=1,2,--+,5,5=1,2,3,---.
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(C) A=_p09 p0=é’%»%a’ ’
C2 = p(z)_ %’
Cs = 1po,

Ci= tps — ip5.
This is similar to (a) with ¢ — —q.

P =P p=pets
g=7y - qg=vy , q=Po+t cen}, (318)
A=y —s+y<A<s+y —s+p+t<A<s+p—1t
where y = 3,3, -, po,t=1,2,-++,s5,5=1,2,3,---.
@ A=—py, po=htt- .
This is similar to (b2) with ¢ — —gq.
P=D Pp=py+s
g=—y;- - q=—y , q=_(P0+t) ceey, (319)
=7 —s—y<LALs—y —s—p+tLALs—py—t

wherey = 4,3, -, pp, t=1,2,"-,5.8=1,2,3,---.

We note that cases (a) and (b) have the same eigenvalues for the three Casimir operators. However, since the
composition of each unitary irreducible representation is different, the two representations with the same

C, C3, and C, are unitarily inequivalent. Similarly, the representations in (c) are unitarily inequivalent to
those in (d).
(iv) For most degenerate discrete series (p = integer) we get

A*=pE, p,=0,1,2,3,---,
B=0, or B=—1,
Co=po—4,

C, =0,

— 18 2
Cy= 1P — Ds-
There are six cases:

@ A=p,=0.
From Egs. (1.7b), (1.7c), (1.8b), and (1.8c), we see that g is always 0:
= =0 =1 =S
b=p g o } (3.20)
A=0 —-1<i<1 —s< A<z
where s =0,1,2,-+; —s<A<smeans A = —s, —s+ 2, —s + 4, -+ ,s.
(b) A=P0a P0=112a3a“'-
This case is similar to (iiia). The only difference is that here p is integral,and g = —p, —p + 1, -+, —1:
P = Do pP=pots
q=_7" e q= -y > q=—(P+t) R (3'21)
A=y —s+y<LALs+y —s+p+tLAi<s+p—t

wherey = 1,2, ,po, t=1,2,-++,s5,8§=1,2,3,---.
(© A=py, po=1,2,3,---.
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This case is similar to (iiib). Here,g = 1,2, -, p:

P =Po P=pots
g=y ;- g=y , g=pot+t (3.22)
A=—y —s—y<ALs—y —s—p+t<A<s—p,—1t
wherey = 1,2, -+ ,po, t=1,2,-++,5,8=1,2,3,--".
@ A= —py, po=12,3,---.
This case is similar to (ivb) with ¢ — —g:
P =Po P=pots
g=7y}- " g=y , g=po+t e, (3.23)
A=y —s+y<A<s+y —s+p+t<A<s+p—1t
wherey = 1,2, - ,pp, t=1,2,-,8,5=1,2,--.
(e) = —Po> P0=1’233"”'
This case is similar to (ivc) with g — —g:
P =P P=Ppots
g= -y qg= -y , g=—@po+1) (3.24)
A= —y —s—yLALs—y —Ss—p+tL<A<s—p,—t¢

Where?= 1,2a.'.3P05t= 1,2,"',S,S= 1,2"'.-

® A= Z£py, pp=12,3,---.

Cases (b) and (d) include ¢ < —1, while cases (¢) and () include g > 1. Here in (f) ¢ = 0 always. Equations
(1.7v), (1.7¢), (1.8b), and (1.8¢) give a(p,q =0, 2) = aj(p,q =0,4) = bi(p,q =0,2) = b2(p,q=0,1) =0
for all p and A. On the right boundary p — A = p,, a}(p, g = 0, 1) = 0, while on the left boundary p + 4 = p,,
bi(p,q=0,4) =0:

= =p,+1 =py+s
P=DPo| P=Do | P=Pe s (3.25)
A=0)—-1<1i1<1 —s <AL

where s =0,1,2,---; —s< A< smeans A= —s, —5 2, —s + 4, -, 5.

Since only A% appears in Eqs. (1.7) and (1.8), Equations (1.7a)—(1.7c) give us three relations:
A = +p, gives the same unitary irreducible repre- — AR = A 2 32
sentation. @=A"={t+4H+2) (3.27)

Here we note that the irreducible representations of R .
(ivb)-(ivf), all have the same eigenvalues for C,, C,, @+ —s+1DP=(@+s+1-4)7 (328)

and either

and C;, but they are all unitarily inequivalent. B = —g, = p,, (3.29a)
(2) Next we consider those unitary representations Of

whose p—4 diagrams are of the form given in Fig. 2(a). B = g4 = py, (3.28b)

These representations are in the D~ series. (Go— Ao+ s5s—12=(po+ s+ 1+ A% (3.29b)

From Egs. (1.7d) and (1.8d) we note that, for

p = p, but arbitrary ¢ and 1 The solution to Egs. (3.27), (3.28a), and (3.29a) is
— F0 ]

a(posq, 1) = bipo,q, ) =0 A=12+2, (3.30a)
requires qo = —Po> (3.31a)
B =p,. 2
, Po (326)  1nd the solution to Egs. (3.27), (3.28b), and (3.29b)
On the right boundary is
p+ri=pot+iy, 9=qo, = —(4 + 2), (3.30b)

a?(P,q, N)=0, i=1,2,3. 9o = Po- (3.31b)
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From Egs. (1.7b) and (1.7¢), we have
a(psq = po, 1) = a3(p,q = —po, }) = 0;

therefore, —p, < g < p, always.

Now we shall determine the allowed values for 4,
such that Eqs. (1.7) and (1.8) give us unitary irreducible
representations. The unitary conditions Eqs. (16.4)
and (I6.5) give eight inequalities (we need to consider
A = 24 + 2 only):

@—dtptHg—2—-p—-21-4<0,

(3.32a)
G+2+p—2)g+2i—p+2+2)20,

(3.32b)
G—A+p+i+D@g—2A—-p—72—42>0,

(3.320)
(q+/‘[o+P—ﬂ-+2)(q+lo—P+Z+2)$0,

(3.32d)
@+2+p—2+Hg+i-p+1HLO,

(3.33a)
g—2+pt+tht+tHg—2—p—24—-2)20,

(3.33b)

@+A+p—h—2@G+i—p+ 1) 20,
(3.33¢)

G=2+p+2i—=2)g—2—p—2—-2)L0.
(3.33d)

Equations (3.32) and (3.33) have two solutions:
)
g~—A+p+1L0,
g~l—p—21—4>0,
q+l_P+lo+2S0,
9"}*+P+lo+2_>_0,

(3.342)
(3.34b)
(3.34¢)
(3.34d)
(ii)
g+%+p—24+4<L0,
g+4—p+2120,
g—A—p—14—-2<0,
g+A+p—4—22>0.

(3.35a)
(3.35b)
(3.35¢)
(3.35d)

Since 4 is bounded on the right, 4, — 4 > 0, solution
(ii) is ruled out. Solution (i) is possible, and Eq.
(3.34b) gives

Ao £ —po — 2. (3.36)

When we compare Eq. (3.36) with the expression 4, =
A, =-J,— K, — S, —4 in Theorem I3, we see
that (py = J,, + K,,) the allowed values of §,, are
now S, = —2,—1,0,1,2,3,--+."

The decomposition of a unitary irreducible repre-
sentation in the D~ series has already been given in
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Theorem I3, in which Case (A.1), with J, =0,
K,=1%,1, §,---, corresponds to Egs. (3.30a)-
(3.31a) with p, = K,,, g0 = —K,,; Case (A.2), with
K,=0,J,=4%,1, §,---, corresponds to Egs.
(3.30b)-(3.31b) with p, =J,,, qo =J,; and Case
(A.3), with J,, = K, =0, corresponds to either
(3.30a) or (3.30b) with p, = 0, since only A% appears in
Egs. (1.7)and (1.8). Since S, = —2, —1,0,1,2,3,---,
weseethat, for every finite representation ((f,, , ks 4,))s
there exists a unitary representation D~(/,,, K,,, A,.),
but the converse is not true. (There are no finite
representations with S, = —2, —1.) It is trivial to
check that expression (16.15) satisfies Eqs. (3.34).
The three Casimir operators are

Cy = 2(py — D(po + 2) + (Ao + 2)% (3.37)
C; = (4 + 2)po(po + 1), (3.38)
Co= 1A +2)" = (4 + 2*(p; + po + 1), (3.39)
where
Po=0,%1,%--,
ho=—Po—2,—py— 3, —pp— 4, ",

which are the same as that given by Eqs. (16.8)-(16.10)
for the degenerate representations.

In conclusion we remark on the p—4 diagrams of the
form given in Fig. 2(c). From Eq. (1.7b) we see that
for fixed 4 and ¢ but large p, @+ A+ 1! — (p +
1 — A)? is negative, while for fixed p and g but large
negative 4, (¢ + 2 + 1) — (p + 1 — A4)? is positive.
Hence, the unitary condition (16.5) cannot always be
satisfied, and there do not exist unitary degenerate
representations whose p-A diagrams are of the form
given by Fig. 2(c).

(3) We do not have to consider the unitary repre-
sentations whose p—A diagrams are of the form given
in Fig. 3(a) in detail, since they are mirror images of
the representations in the D~ series. These representa-
tions are in the DT series and have been discussed in
Theorem I4.

(4) Now we come to those unitary representations
whose p—A diagrams are such that 4 is unbounded,
—o <A< o, forp > p,.

From Egs. (1.7d) and (1.8d),

ai(Ph q, }“) = bi(po, q, 1) =0

and B = p,. But from Eq. (1.7b) we see that for fixed
(g + A+ 1)? and increasing p, a3(p,q,4) cannot
remain positive. Therefore, p, = 0 and ¢ = 0 always,
and

ag(p, g, 4) = ag(p’ q, A) = bg(p, q, )

= bi(p, q, ) =0. (3.40)
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There are two cases to be considered:

(i) The most degenerate principal continuous series.

Equations (1.7a), (1.7d), (1.8a), and (1.8d), to-
gether with the unitary condition (16.4), require

A2 < 0. (3.41)

The limiting case A2 = 0 has already been included in
the D~ and D series, since the boundaries p + 4 =
—2 [on which @%p,0,1)=0] and p— A= -2
[on which b2(p, 0, 1) = 0] exist.

Let A = ip, with p > 0, the three Casimir operators
are

C, = —4 — p?, (3.42)
C, =0, (3.43)
Cy=1p* + P (.49

The three Casimir operators depend on one con-
tinuous parameter p only, and the unitary represen-
tations under study are said to belong to the most
degenerate principal continuous series.

Again there are two cases.

(a) p + A = Zeven integer.

2 i)
l=0,i2,i4,-..l=il’i3’.,, P
P=2S }p=2s+1 }”.}
A=0,42, 44, A= 1, +3,-+- , (3.45)

where s =0, 1,2, -+, and g = 0 always.
(b) p + A = %odd integer.

FRRIIPRN o )
A= 41,%3,--- ] 1=0,42, +4, - s
p=2s }p=n+1 } }
A= 4+1,43,---) A=0, 42, +4,--- , (3.46)

where s =0, 1,2, -+, and ¢ = 0 always.

(i) The most degenerate complementary continu-
ous series.

This series occurs for p + 4 = +odd integer only.
From Eq. (1.7a) we see that

042 <1 (3.47)
is also allowed.
Let A =0, 0 < 0 < 1. The three Casimir opera-

tors are

(3.48)
(3.49)
(3.50)
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A= 41,43, A =0, £2, +4,- - ’
=2 =25 41
P P ]} (3.51)
A= 41,43,/ 2=0, £2, +4,- -

where s =0, 1, 2, -+, and ¢ = 0 always.

(5) Finally, we study the unitary representations
whose p-A diagrams have degenerated into straight
lines. There are two cases to be considered:

(i) p-2 = y (an integer).

Here we have

az(P, q’ j') = a3(ps qa }') = a4(Pa qa j') = bl(P> q’ )‘)

= by(p,q, ) = by(p,q, ) =0.  (3.52)
There are again two cases:
(@) 9= Po-
From Eq. (1.7d), we get
pot A=y, (3.53)
which, when taken together with Eq. (1.8a),
Po+ AP —(p—24+22=0, (3.54)
gives us
y=—1
or
A=p+1. (3.55)

Equations (1.7b) and (1.7c) give us two possible
solutions: either

(B—po)(B+py+1) =0, (3.56a)
Po—2A—12=(p+ 1442 =0, (3.56b)
which result in
A= —=py+1,
B=py, or B= —p,—1, (3.57)
or
Po+ A+ 1= (p+1—A4P=0, (3.58)
(B+po)(B—p,+1)=0, (3.58b)
which result in
A=—p,—1,
B=—p, or B=p,—1. (3.59)

Equations (3.57) and (3.59) give the same expression
for the three Casimir operators,

Co=3(p; — 1), (3.60a)

Cy = —po(ps — 1), (3.60b)

C,= —i(p; — 1) (3.60c)
where

P0=0a%:1,%,"'-
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Equations (1.7a) and (1.8a) now become very simple.

ap.a=po,A=p+1)=—1 (3.61)
fOI'P=Po,P0+ 19P0+2:"',and
bip,a=py, A=p+1)=—-1 (3.62)

for p=po+ 1, po+ 2,---. Therefore, they are
constants and independent of p,!
Similarly, for

(b) 9=p

we simply replace p, by —p, in Egs. (3.53)-(3.59), and
the three Casimir operators are

C,=3(p — 1),

C3 = Po(Ptz) - 1)’
Co= —%(ps — D

Again, we have

(3.63a)
(3.63b)
(3.63¢)

a(pog= —po,A=p+1)=—1 (3.64)
forP=P0’P0+ 1’P0+2" T and
bi(p,g= —po,A=p+1)=—1 (3.65)

forp=py+1,pp+2,--.
Next, we study

(ii)
Here we have
al(F’ q, 1) = a2(P’ q, A= a3(p’ g, %) = by(p,q, A

p + A =y (an integer).

= by(p,q, }) = by(p,q, ) = 0. (3.66)
There are again two cases:
(@ q = Po-
From Eq. (1.8d), we get
Po— A=ty (3.67)
which, when taken together with Eq. (1.7a),
@Po— AP —(+1422=0, (3.68)
gives us again
y = —1
or
A=—-p—1 (3.69)

This is just the “mirror image” of Eq. (3.55), as
expected. Equations (1.7b) and (1.7¢) give us either
(B~p)B+po+1)=0, (3.702)
Po—A—-12—=(p+1+4+4)2=0, (3.70b)

which result in

A=P0—1’

B=p,, or B= —p,—1, (3.71)
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or
Po+A+1)2—-(p+1—42=0, (3.722)
(B+ p)(B—py+1)=0, (3.72b)
which result in
A =P0 + 1’
B= —p,, or B=p,~— 1. (3.73)
The three Casimir operators are
Ce=3(ps — 1), (3.74a)
Cs = po(ps — 1), (3.74b)
C,= —3(p: — 1)~ (3.74¢c)
Here we have
bi(p, g =po,A=—p—1)=~1 -(3.75
forP=Po,P0+ 15P0+2"” ’and
ai(p, g =po, A= —p—1)=—~1 (3.76)

forp=po+1,pp+2,---.
Similarly, for
(b) q9="Do
we simply replace p, by —p, in Eqgs. (3.67)-(3.73), and
the three Casimir operators are

C,=3(ps — 1), (3.772)
Cs = —po(ps — 1), (3.77b)
Ci= —§(p% — 1)% (3.77¢)
Again, we have
bi(p,g = —py,A=—p—1)=—1 (3.78)
forp =P0’P0 + l’Po + 25 tTt, and
ai(p,qd = —pp, A= —p—1)=~1 (379

forp=py+1,po+2,--.

Since the functions al(p, ¢, ), and b3(p, q, A) are
either 0 or —1, fori = 1, 2, 3, 4, we say these unitary
irreducible representations belong to the exceptional
degenerate discrete series, the E* series.*

4. SUMMARY OF DEGENERATE UNITARY
IRREDUCIBLE REPRESENTATIONS

I. The Most Degenerate Principal Continuous Series

C2 = —4 - PZ’
Cy =0,
Ci=1p' + p%

where p > 0, and 4 = ip, B = 0. ¢ = 0 always.

4 The exceptional degenerate discrete series (the E™ series) have
recently been used in the study of infinite-component wave equations
[Y. Nambu, Phys. Rev. 160, 1171 (1967)].
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(a) p + A = Zeven integer [see Eq. (3.45)],
(b) p + A = Lodd integer [see Eq. (3.46)],
withp=0,1,2,---.

II. The Most Degenerate Complementary
Continuous Series
C, = —4 + a2,
C; =0,
Ci=fo* — o,
where 0 < 0 < 1,and 4 =0, B=0, g = 0 always.

p+ A= +odd integer with p =0, 1, 2, -+ [see
Eq. (3.51)].

III. The Discrete Series (the D~ Series)
Co=2(po — D(po + 2) + (A + 2)2,
C3 = (4 + 2)po(po + 1),
Cy= (4 + 2)4 — (% + 2)2(173 + po+ 1),

where

do=—po—2, —po—3, —po—4 ",

A= +(% + 2), B = p, [see Theorem I3, Eq. (16.15)].
IV. The Discrete Series (the D* Series)
Co = 2(po — 1)(po + 2) + (4 + 2)2s
Cs = £(4 + 2)py(po + 1),
Cyi= 1 + 2)4 — (4 + 2)2(1’3 + po+ 1),
where
P0=01%’1’%9”"
/10=P0+2, Po+3, P0+4,“'s
A = +(4 + 2), B = p, [see Theorem 14].

V. The Most Degenerate Discrete Series

(p = Half-Integer)

C2 = pg - %a

C3 = :IziPOa

Cy = 1po — ip5,
where pop=1%, 3, §,---. p—212>0,and p+ 1>
pot+ 3% A=Fp,, B=—3% [See Eqs. (3.16) and
(3.18)].

VI. The Most Degenerate Discrete Series
(p = Half-Integer)
C2 = p(2) - %!
C3 = :’:ipo >
C4 = ip?) - 21’(2)’
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where po =14, 3, 8,---. p+412>0,and p—12>
Po+ % A= TFp,, B=—4% [see Egs. (3.17) and
(3.19)].

VII. The Most Degenerate Discrete Series
(p = Integer)
C.=p; — 4,
Cy =0,
Cs = 1ps — Ds>
where po=1,2,3,---. p—420,and p+ 12>

Po+1l. A= xp,, B=0, or B= —1 [see Egs.
(3.21) and (3.23)].

VIII. The Most Degenerate Discrete Series
(p = Integer)
C,=p; — 4,
C; =0,
Cy = 1ps — Po>
where p,=1,2,3,---. p+42>0,and p— 12>

Po+1l. A= xp,, B=0, or B= —1 [see Egs.
(3.22) and (3.24)].

IX. The Most Degenerate Discrete Series
(p = Integer)

Cy, = pg — 4,

C3 = 0,

Cs = tpo — Po>
where p, =1, 2, 3,-++, ¢ = 0 always. p — 4 > p,,
and p+4i2>2p,. A=+p,, B=0, or B= —1
[see Eq. (3.25)].

X. The Most Degenerate Discrete Representation
(Po =0)
This is an isolated representation; it could have been
included in Class IX:

C2 = _4’
C3 = 0’
C4 = 01

where 4 =0, B=0, or B = —1 [see Eq. (3.20)].

XI. The Exceptional Degenerate Discrete Series
(the ET Series)

C2 = 3(1)(2) - 1)’
Cs = Fpo(ps — 1),
C,= —¥p; — 17,

where py, =0,%,1,%,-: - ,g=+p,and A =p + 1
always [see Egs. (3.61) and (3.64)].
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XII. The Exceptional Degenerate Discrete Series
(the E— Series)

C.=3(ps — 1),

Cy = xpo(ps — 1),

Cy = —3(ps — 1)
where p,=0,4%4,1,3,- -, g =% py,and 1 = —p —
1 always [see Eqgs. (3.75) and (3.78)].

XIII. The Principal Series

C2=P3_2P2_%,

C; = :EPO(P2 + D

Co=1n + P(%(P2 -3,
where po=0, 4, 1, §,-«+, p> 0. p—-12>0 and

p+Ai>0 A= Fp,, B= —} £ ip [see Eqs. (3.14)
and (3.15)].

XIV. The Complementary Series

Ce = p5 + 2(c — 1)(o +2),

Cy = *po(o + 1),

Co=1ips — pic* + 0 + 1),
where p,=0,1,2,3,-++, -1<0d<0.p—12>0,
and p+12>0. A= 4p,, B=oc [see Eqs. (3.14)
and (3.15)].

There are 14 classes of degenerate unitary irreduc-

ible representations. The first four classes are the
exact analogs of the four classes found by Bargmann®

5 V. Bargmann, Ann. Math. 48, 568 (1947).
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in his study of SU(1, 1). In both cases there are two
continuous series. (1) an even series: for SU(2, 2),
C; < —4,C3=0,Cy=1Co(Cy + 4),p+ A= L even
integer; for SU(1, 1), C?, g >0, m = Zinteger.
(2) an odd series: for SU(2, 2), C; < —3, C; =0,
Cy = 1Cy(Cy + 4), p + A = dodd integer; for SU(1,
1), Cg, g > }, m = +half-integer. There are also
two discrete series in both cases: the D* series. Here
the similarity is due of course to Harish-Chandra’s
theorem connecting the finite representations with the
unitary representations in the discrete series. Further-
more, in SU(2, 2), we find that [following Eq. (3.36)]
S,=—-—2,—1,0,1,2,--- . Thevalues S,, = —2, —1
have no analog in the finite representations. In SU(1, 1)
the same situation occurs, k = %, 1, 4, -+, and the
value k = 4 has no analog in the finite representations.

Finally, we comment briefly on the unitary repre-
sentations found by Murai.® His classes I and II are
essentially the same as our classes I and II. However,
there is a slight mistake in his class I. From Eqs. (3.45)
and (3.46), together with Eqs. (1.7) and (1.8), we see
that the representation with p 4+ 2 = 4-even integer
and the representation with p + A = fodd integer
are disjoint; there are two irreducible representations.
Murai’s classes III and V together are exactly the
same as our class IV, the Dt series, while his classes
IIT" and V' together are the same as our class III,
the D~ series. His class IV is identical to our class X,
the isolated most degenerate discrete representation.
Our classes V-IX and XI-XIV are all absent in
Murai’s study for reasons already mentioned above.
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Inverse functions of products of two Bessel functions j,(xy)j.(xy) are determined for the cases m = /,
! + 1, and / + 2. Integral representations for these inverse functions in terms of Neumann functions are
given, and some of the simplest ones are expressed in terms of trigonometric functions.

We show how one may obtain an integral representation for any well-behaved function in terms of
products of two Bessel functions, with the help of these inverse functions and also outline some of their
applications to potential scattering. In particular, we demonstrate the usefulness of the inverse functions
in determining the potential explicitly from the phase shifts in the Born approximation,

1. INTRODUCTION

In some recent nuclear calculations! a particular
integral representation of r2+®e~" was used. The
crucial characteristic of the integral representation was
that it contained j2(kr) as part of the integrand. With
the help of this representation, integrals of the nuclear
two-body potential V,(r) weighted by the products of
two harmonic oscillator wavefunctions = 3, a,r?(+»
e were obtained directly from the Born approxi-
mation.

In other words, this representation was used to
establish a simple connection between

0 [ "ot ar
k 0
and

=)
> a,,f PPy ()2 dr,
P 0

It is because the Born approximation gives inte-
grals of Vi(r) weighted by jZ(kr) that this function
appears in the integrand of the above-mentioned
representation.

Expression (1) is the representation that was
obtained in the case p = 0. A direct derivation of this
result is given in Appendix A.

Pl = L wﬁ(kr)[— 2———F(lﬂ+ ), k?
x (34— 1 —k?)] k. (1)

In this expression j#(kr) is the usual spherical Bessel
function® and ,Fy(3;% —/; —k*) is a generalized
hypergeometric series.?

1J. P, Elliott, H. A. Mavromatis, and E. A. Sanderson, Phys.
Letters 24B, 358 (1967).

2 L. 1. Schiff, Quantum Mechanics (McGraw-Hill Book Co., Inc.,
New York, 1955), p. 77.

*1. N. Sneddon, Special Functions of Mathematical Physics and
Chemistry (Oliver and Boyd, London, 1961), p. 38.

The function (Fy(3; 4 — I; —k?) in expression (1)
can be written with the help of Kummer’s formula
(see Appendix A) as e*"|F,(~I — 1;  — [; k?) where
1Fi(—=1—1;% —1;k%is an (I + 2)-term polynomial
in k2. The generalization of expression (1) to the case
where p # 0'is carried out in Sec. II [see expression
(14)]. Section II also concerns itself with the deter-
mination of the inverse function of j?(p) and some of
its other mathematical and physical applications. In
Secs. III and IV the inverse functions for j,(p)j;,1(p)
and ji;(p)f,.2(p) are calculated.

II. THE INVERSE FUNCTION OF j¥(xy)

One can write expression (1) as follows:

() = f "R\ dk) dk, 0

where y,(r) = r2e~" and
1
s =— T D e par 1),
T

All three functions in Eq. (2) are even, y,(r) =
vi(—r), di(k) = $i(—K), and j2(kr) = j2(—kr). When
cast into this form, expression (1) is reminiscent of
Fourier sine and cosine'transforms, and of Fourier—
Bessel (or Hankel) transforms.* What is necessary
for an analogous transform in j7(kr) is the inverse of
expression (2), namely,

$ik) = f " ekryp(r) dr, 3

where g(kr) is the “inverse” function of j2(kr).

*G. Goertzel and N. Tralli, Some Mathematical Methods of
Physics (McGraw-Hill Book Co., Inc., New York, 196G), pp. 266~
279.
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A general formula for obtaining g,(kr) after the
appropriate identifications is®

Jo ﬂFq(“la‘xza' ) ':“ﬂ;ﬂl’ﬂZ:' . '::Bq; :l:(kr)z)

25,2
e 124

-9

x MFQ(%,%,-- -,a,,,g BuaBa s Ba; ;};Zb““‘k"‘).

O

With the identifications y =2[+ 3, p =1, ¢ = 2,

W=1,a,=4%=%—1 =1+, expression
(4) reduces to

-~ fm +DKLF G = 1 =)

®(—~d(kr)?
= Fu3:} — 11+ &; (kr)?
J;{W(I«}_%)lzzz +2(:))}
X [r¥e " ]dr. (5)
Comparison of Eq. (5) with Eq. (2) shows that the
required inverse function is
4(kr)? : 2
Fo@:. 8 — L1+ & —(kr)").
1T(l+%)1 2(‘% 2 2 ( ))
O]
As j2(kr), g,(kr) is also an even function, g;(kr) =
g:,(—kr). Substituting expressions (2) and (3) into one
another and rearranging the order of integration leads
to

gl(kr) =

v = [ [ i0metiry diopry ar,
80 =" [ iergen argge aw

Hence o
J; Jixng(xy) dx = o(y — ¥,

x,y=r,k or k,r. (7)

Particular functions v,(r), ¢,(k) have been used to
obtain the inverse function of j?(kr). These increase in
complexity as / increases. An integral representation
for g,(p) is readily derived (for /3 0) from the
general expression®:

f lx"‘l(l — x)!

o
X szq(‘XI’ P ) B1» ﬂz, e ,6,1; —'P2X) dx
= B(n’ I)p-i—qu-{-l(al,az’ P Y n;

ﬂl’ﬁZ!.”’ﬁqsn'}‘l; —Pa). (8)

5 Reference 3, p. 48. )
8 Reference 3, p. 47. A misprint appears in Sneddon’s expression
16(i) where B{1, m) appears in print instead of the correct B(l, m).
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After using some elementary identities between
Bessel functions and hypergeometric series®*” and the
following identifications in expression (8): p =0,

=1,n =%, f; = 1 — I, one obtains

VA _
aip) = 16 TG = D
(L + DB, D

1
X f YA — Y n(2py) dy, 1£0. (9)
1]

Thus, g,(p) is a particular weighted integral over a
spherical Neumann function of order /. The three
simplest g,(p) (for I = 0, 1, 2) are listed in Eq. (10):

8 16
go(p) = — — p®cos 2p = — p’ny(2p),
ki ™

8 .
TORE {(p* ~ 2)cos 2p + (—1 - 2p) sin 2p},
8 36 ’ (19)
gp) = — > {(p — 18+ 73) cos2p
n P
+ (-sp +2 - 1%) sin 2p}.
P P

We have verified Eq. (7) for the cases [ = 0, 1 by
using the explicit expression (10) for g,(p) and the
expression for j2(p) in terms of trigonometric func-
tions. Already for the case /=1 the verification
becomes rather lengthy.

It appears that the leading terms of g,(p) for large p
is {(—=1)1(8/m)p? cos 2p. It is interesting to note that
this term and the leading term of j%(p) for large p,
namely, sin®(p — /7/2)/p?* by themselves satisfy an
orthonormality condition analogous to Eq. (7)
(where x, y, y' > 0):

[ B 1y B oy cos 2
o w

(xp)?
=4y —y) (1D
This implies that what is left over of the functions
J2(p), gi(p) constitutes functions whose overlap is zero:

[ - st

8 {g‘(xy ) = (=1 2 (xp)? cos (2xy’)} dx =0,
m

(12)

With the help of g,(kr) one can find the ‘)7 trans-

form” of any well-behaved function P(r) which goes
to zero at least as 1/r? for r — c0:

P(r) = L * 2Py F(k) dk, F(K) = L ® o (kr)P(r) dr.
(13)

7 Reference 3, p. 116.



BESSEL FUNCTIONS AND

Using these integral representations one may also
extract from the Born expression integrals of V,(r)
weighted with any well-behaved function P(r).

We illustrate the usefulness of the inverse functions
of j2(kr) with two specific examples.

Suppose we wish to generalize expression (1) and
obtain an integral expression for P(r) = r¥'+?e~",
Then from expression (13),

X 1F2(%; % — L1+ %; _(kr)z)}r2(l+p)e_rz dr.

which may be evaluated with the help of expression (4)
and the identifications p=1,¢=2, o, =%, f;, =
y— L Bo=1+% p=2+2p+3, 20*=1. Thus

r2(l+p)e—~r2 =J0mﬁ(kr){— 2I1(1 +p+ %) k2

w(l + %)
X Fod 1 +p+ 3 —1L1+% —k2)} dk. (14)

Expression (14) simplifies to expression (1) for p = 0
and is also quite simple for / = 0 and arbitrary p since
then, as in the case / = 0, the ,F), in theintegral reduces
to an ,F, which is just e** multiplied by a (p + 2)-
term polynomial in k2.

Another more practical application of the inverse
function g,(kr) occurs in potential theory. In the Born
approximation the phase shift for the /th partial wave
is given by

2 ©
_F k) =f FA PV (r)r? dr.
m k 0

If the phase shifts are known from experiment and
the Born approximation is assumed to be valid, one
can in fact obtain the potential V,(r) directly from
8,(k), since multiplying the above expression by
g, (kr’).integrating over k,

J;wdkgl(kr’)(_ hi @%_))

- f " dkg (k) f " drfry Ve,

interchanging the order of integration,and using Eq.
(7),0one obtains

Vi = f wgl(kr)(— f—n?%-)) dk.

For a simple illustration of (15) consider the / = 0
partial wave and assume V,(r) is the square well
Vo() = Vo, r<b; Vo(r)=0, r>b. One can

(15)
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calculate the phase shifts directly:
X () J‘ P b*  sin 2kb}
—— =V kryr¥dr = Vol — — ———1.
m 0], Jolkr) °{2k2 4K

If this expression for dy(k) is substituted into (15),
one regains the square-well potential:

Vo(")=Vo—1{f M“'_")kdk
7 |\Jo k
w 1 ——
+ J‘ sin 2(b — r)k dk:
) k
=V, for r<b,
=0, for r>b,
since
® sin ak T
dk = —, f 0,
L A 2 i o>
k
= ——, |if 0.
2 *<

IIl. THE INVERSE FUNCTION OF j(xp)ji;1(xy)

To obtain an inverse function for j,(p)j,,:(p)
analogous to the inverse function for j¥(p) of the pre-
vious section, the following approach may be adopted.
Divide expression (1) by r* and differentiate both sides
with respect to r using the relationship?

d . ;. i
d_ {P lh(P)} = —p lh+1(P)-
p
The result is
e = | ik e
[
2 1\3 3 2
x [— 210+ DO Fi(E: 3 — 1 —k )} dk.
k3

(16)
An expression involving the inverse function of
Ji{p)fira1(p) may be obtained exactly as before with the
help of Eq. (4). The identifications are 4 =2/ + 5,
p=1’ q=2’ 2 =1, 0(,1=%, ﬁ1=%—l, ﬁ2=
14 5:

|~ 210+ DR - 1 k)

[ —4kr®
Al + DU+ D)
X 1 Fo3 3 — L1+ & —(kn))r e dr. (17)
The inverse function of j,(p)j;,1(p) is
4p°

O == TN+ D

Fod 3= L1+ 3 —p)
(18)
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or
L S Cn(xy’) dx = 8y — ). (19)

A difference from the previous section is that both
Ji(P)j1a(p) and 7,(p) are odd functions

jL('"P)jH»l(“P) = —jlpli(p), 1(—p) = —1t(p).

For I =0 we evaluated #,(p) explicitly in terms of
trigonometric functions and verified expression (19)
directly:

to(p) = — %{(p2 — $)sin2p + pcos2p}. (20)

Similar considerations apply as before. The functions
t,(p) can be expressed with the help of expression (8)
as integrals over a particular weighted integral of a
spherical Neumann function.

The leading term in #,(p) as p — co appears to be
(—1D™1(8/m)p? sin 2p. Multiplied by the leading terms
of ji(p)jir1(p) as p — oo, namely

1 sin {p — m sin fp — ¢+ 1)”)
P2 P 2 P 2 ’

this product of leading terms again satisfies by itself

an orthonormality relation analogous to Eq. (19).
Further partial differentiations of expression (16)

with respect to r will yield inverse functions of sums

r* ok

H. A. MAVROMATIS AND K. SCHILCHER

of products of two Bessel functions,for instance of

j22+1(P) + jz (P)jz+2(P)-

Physical applications of such functions are not
immediate.

IV. INVERSE FUNCTION OF j(xy)j,5(xy)

A tensor force couples states of equal total angular
momentum but differing by two units of orbital
angular momentum. The coupling parameter p,,(k)
is in the Born approximation proportional to an
integral of the potential weighted by j,(kr)j,.s(kr).
Hence the physical interest in the inverse function of
Jukn)jya(kr).

In this section we make use of an expression derived
by Sanderson.® His procedure is outlined in Appendix
B. The result is the following:

21 3_3_ —r2/20% L 2141
rYb % {e /b*1}
-, sl st [

x Fy3 3 —1; —2b2k2)} dk. (21)

2593301 + )} Kt
(1 — 20)

By applying two judicious partial differentiations
to expression (4), once with the respect to b and once
with respect to k2, it can be cast into the useful form

—1-2/'2b2
bl:;a_ab[e b :|rl-¢+3 dr

20T o)) - () Nty + 1)ty + D+ D

- BB BBy + DB + 1) By + DpyaFlog + 2,0 o, + 2,30+ 2; 8, + 2,0+, By + 2; —2b%%)

With the identifications o, +2 =%, f1+2 =
3—1,8+2=1+43%,u =2+ 1, one obtains from
Eq. (22) the expression
[T- 20+ 1) 0

]

w

x é%{ki Fahs =1 — 314 8 -“‘”2’}]

1 9[er
X (E‘ 'a—b‘[—'————szl ]7‘21) dr
+9/2 1
=2 D pp -
(1 — 21)
By comparing expression (21) and (23) it follows that

2%+ 3 .
77 P

I; —2b%3). (23)

a(p) = —

d{l
x,—_
P

il == s —pz)} (24)

(22)

is the inverse function of j,(p)j;,2(p), or

L W NGy’ dx = 8y — ¥).  (25)

Forl=20,

q0(p) = f_{(Pz — %) cos 2p + 3(;1) — p) sin 2p}.
(26)

A direct verification of Eq. (25) was carried out for
I = 0. Asin Sec. I1, j,(p)j,, 2(p) and q,(p) are both even
functions. ¢,(p) can be written as a sum of two ,F,
series or as a sum of two integrals of weighted spher-
ical Neumann functions. We use Eq. (25) to obtain
G(k) in

rre =ij 1-1(kr) ja(kr)G(k) dk, @7

8 E. A. Sanderson (private communication).
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an expression similar to Eqs. (1), and (16), and slightly
more useful than expression (21).
By arguments similar to those leading to expression

(13),
G(k) = f * g (ke dr. (28)

This integral is evaluated with the help of Eq. (4):
G(k) = @+ 1)2[1‘(11 + 1)
ks

2
x oFo(b ELH 1 - b1 1 -k
2k I,(p+3)
Q1+ 1) 2
e R !
(29)

If p = 2/ the ,F,’s in expression (29) reduce to Fy’s
and expression (27) becomes

rme—r“ =J; Jima (k1) jrya(kr)

1
X {M -k Fi(—1— 13— ;=K

+ QI+ 1),Fy(—1—-1; —l—%;k2)]} dk, (30)

where the term in square brackets is an (/ 4 2)-term
polynomial in k2.

Y. CONCLUSION

A conjecture from this work appears to be that
inverse functions for any j,(xy)j,.(xy) (and not only
the cases m = [,.[ + 1, I + 2 to which we restricted
our attention) could be obtained if one utilizes the
procedures and techniques outlined in this paper. As to
physical applications, some of the expressions in this
paper have already been used in nuclear calculations.»?
We are presently using the inverse functions to obtain
the two-body potential explicitly from the experi-
mental phase shifts. For this purpose we employ
Eq. (15) and related expressions.
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APPENDIX A

In this appendix we derive expression (1). Using
Kummer’s relation,?

1Fi(o; B x) = € Fy (B — a5 5 —x),
the right-hand side of Eq. (1) becomes

L mji(kr)[— 2ra+p

X e PR F (=] — 133 — I; kz)] dk

4l (¢ __ 71 -] 2
=-Tl+H3 —— l 1)’; f Toea(kr)e™ k24 dk,
= (3 — Dntte

(A1)

where we have written out Fy(—/ — 1; 3 — I; k?) as
an explicit sum, interchanged the order of summation
and integration, and converted from spherical to
cylindrical Bessel functions?

(10 =2 9010

The integrals of expression (Al) can be evaluated
with the help of the expression’®

f T (k) (kr)e ™ k3 dk
0

rmp(z +u+v)
B 2
T 2Dy 4 DD + 1)
p+rv+1 p+v+2 A+pu+v,

X oF ) 5 >
”( 2 2 2

y+1,1/+1,,u+’”+1§—"2),

A+u+9>0, (A2

and the identifications y =v =1+ 4%, A=2n+ 2.
Thus expression (Al) is equal to:

Fol+1L,n+1+51+8204+2;,—r9)

_ P04+ S @ (== DL+ L4 DU+ D X (14 T+ Hu(=r)"

T22A(] 4 3)2 50 e

9 J. P. Elliott, H. A. Mavromatis, E. A. Sanderson, and B. Singh
Nucl. Phys. (to be published).

G = Dun!( + D2l + 2),,m! Ay

10 G, N. Watson, A Treatise on the Theory of Bessel Functions
(Cambridge University Press, London, 1966), p. 396. A factor of 4
is missing from the right-hand side of this expression in Watson.
This was kindly pointed out by E. A. Sanderson.
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However,

P'n+14+ P+ 14+ D
P+ 35U+ Hn
We use this identity in expression (A3) and interchange
the order of the summations.
=T + Pr* S (1 + Du(=r)"
T + 9282220 (21 + 2),,m!
o (S Dalm + 14 ~)}
(& — Dyn!
=T+ PHr* L0+ Du(=r)"
T T( + 3B 2, @l + 2),m!
X oF(—=l—=1,m+ 143} —
But by Vandermondes’ Theorem,1-12
Fi(—=(U+D,m+1+43-6L1)
= (=D"'(m + 1 + Dia

32— D

=(m+ 149,

n=0

1;1). (Ad)

bl

which can be written as

_ (=D"Q! + 2),L'@2! + 2(=1)'TE)*
~ TA + DRI+ DIA + )
_ (—1)2l+1(21 + 1)m221+2p(l + 3)
C o d+DJIG+D
Upon making this substitution, Eq. (A4) reduces to

0 _rz m 2
rZZ Z ( ) — TZZe—r ,
m=0 m!

assuming / to be integral. Hence
2 © 1
rele—T =f -ﬁ(kr)lt— 2F(l + 2) k2
0 ™

x Fid: 3 —1; —kZ)] dk.

11 Reference 3, pp. 11, 17, 18, and 23.
12y, L. Luke, Integrals of Bessel Functions (McGraw-Hill Book
Co., Inc., New York, 1962), p. 18.
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APPENDIX B
For completeness here we reproduce Sanderson’s
derivation of expression (21). In Eq. (1) let 2 — r?/2b2,
k? — 2b%2; then
21 2 ®©
-ggle—”/% = Ab° fo Fi(3; 3 — 15 —2b%2) j3(kr)k® dk,
(B1)

where A= F(l + %)2l+g/,”'

Now use the fact!® that

; d . . . :
Filkn)k® = = (k) — Jia(kn) fuaCer))}, 121,
and integrate (B1) by parts. The surface term vanishes,
leaving

21 ,—r?/20"

re
b2l+5

©, d
=24| kK|—o5F13 1~ 1; 2% |
L [d(-2b2k2) Fy( I; —2b% )]
X {le(kr) _jl—l(kr)jl+l(kr)} dk. (B2)

Differentiating Eq. (Bl) with respect to b on both
sides,

2952
e’ /2b rzl

b21+5

© d
= —4A4| k| ———— F,(3; 1~ I; —2b%*
ﬁ [ o b )]
xj%(kr) dk, (B3)

and adding Eq. (B3) to two times Eq. (B2) yields the
desired result,

2 5 (g2t @

S| =, earaten

[EB e
w(1 — 2I)

{—(zz +3) +b1}

:Ik“ Fa(B: 8 — 1; —26%2) dk.
(B4)

13 Reference 3, p. 116.
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We continue the study of the asymptotic behavior of the scattering amplitude f(k, 0) at high-momenta
k for fixed (nonforward) scattering angles 6. The considerations here are limited to the class of potentials
for which the momentum-space representations ¥(g) decrease less rapidly than some inverse power of ¢
as ¢ — co through positive real values. We place some additional relatively simple conditions upon V(g)
forq > 0 which are sufficient to guarantee that the asymptotic limit of ffor large k with fixed 6 is, in fact,

the first Born approximation f,(k, 6).

L INTRODUCTION

In this paper we limit our considerations to scatter-
ing from central potentials ¥(r) and study the asymp-
totic behavior of the corresponding scattering
amplitude f(k, 6) in the limit as the momentum k£ — co
while the angle 6 is fixed away from the forward
direction. In particular, f is compared with the first
Born approximation f,(k, 6) in this asymptotic limit.

One may give plausibility arguments to indicate
that f; is the asymptotic limit of £.* These plausibility
arguments are misleading and lead to incorrect
conclusions in certain cases. The purpose of this
paper is to establish that f; is the rigorous high-energy,
fixed-angle limit of f for a certain class of potentials.

Let us adopt the following convention for the
Fourier transform of the potential V(g):

1
@ny’

At the outset V(g) is restricted by the requirement
that there exists a number p > 3 such that?

V(q) = f dxV(x)e-ia-x, M

lim ¢" {V(q)] = 0, forn < p, (2a)
q—*

lim ———=0, forn > p. (2b)
a0 q" |V (q)]

We have in mind to prove the following limit involv-
ing f and f; for certain potentials which are subject

* Supported in part by the Atomic Energy Commission.

1 N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions
(Oxford University Press, London 1965), p. 110ff.

2 The results of this paper can be extended to cases for which the
limit (2b) does not exist, such as the example

sin ga
q) = 5
@ =1
for which neither (a) nor (b) exists for n 2> 4. In such cases one can
define an alternative limit, namely

n—1
A(n) = lim —— .
e 47 [ dp | V(p)|

For our example, 4(n) = 0 for n > 4. Note that A(n) is identical
with (2b) whenever (2b) exists. We can extend the results of this
paper by considering limits defined in this way. Details will not be
given.

2)3:
o ® )

ko fi(k, 0)

0+0tixed

It has been established that f— f; in the limit as
k — oo with the momentum transfer A fixed. A
particularly elegant proof of this has been given by
Hunzicher.* Hunzicher obtained an expansion of
f(k, A) for fixed A in inverse powers of k, which is of
the form

£k ) = fi(A) + i Gy(A) + i— Go(d) + -+ -

3

[One can easily check that fi(A) does dominate the
first two terms of this expansion in our fixed angle
limit for a wide class of potentials subject to (2), so
that the limit (3) is at least plausible.]

We now indicate a procedure for constructing a
proof of (3) for a given potential which is subject to
(2). The first step is to write the potential ¥(x) in the
form

V(x) = v1(x)y(x).
It is convenient to restrict v, and v, to being square-
integrable functions of x. [This automatically restricts
V(x) to being absolutely integrable and square-
integrable over x.] As a consequence, the Fourier
transforms to v, v,, and V are well defined. [The
convention (1) is used for v;(g) and v,(q) as well.]

Let us require that v,(¢) and v,(g) be subject to the
following restrictions:

There exist positive numbers C,, C,, and b and a
number s > 3 such that

1
v <C—-r—, 4
l;(q)l <G aT oy (4a)
d 1
— < Cip ——— . 4
dq v;(q) < é (1+q2b2)s (4b)

3In a previous paper the limit (3) is considered for an entirely
different class of potentials. [In fact, the limit (2a) would be zero
for all those potentials.] The references are P. Johnson [J. Math.
Phys. 9, 712 1968]; and Ph.D. thesis, Princeton University (1967).

4 W. Hunzicher, Helv. Phys. Acta 36, 868 (1964). Hunzicher’s
result is sufficient to guarantee (3) for the case § = 0.
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Under the assumption of these restrictions upon the
potential factors, one can establish the following

order relation involving f — f; as k — oo for 6 % 0
fixed:

1.0) = 16,0 = 0( ) ®)

for0<e< i

Let us make the further restriction that 2s + $ > p,
where p is defined in (1). Then one can conclude that
the following order relation is valid as k — oo with
0 <0 fixed:

Sk, 0) = fi(k, 0) = o[fi(k, 0)].

This relation is equivalent to (3), so that the assump-
tions (4) are sufficient to establish the asymptotic
limit (3).

Let us note that the exponential potential V(r) =
Ae=#r can be factored subject to (3). In particular, if
we write v(r) = v,(r) = v5(r) = (A)}e#/2, we can
show that v(g) is subject to (4) with s = 2, and that
V{(q) is subject to (1) with p = 4. It is a consequence
of the results of this paper that (3) is valid for the
exponential potential.

In Sec. II the limit (5) is established under conditions
(4). In Sec. III we discuss a rather universal factoriza-
tion of ¥ and will indicate how the conditions for the
validity of (3) may be made weaker.

II. BOUNDING THE BORN SERIES

With the restriction (4) we are justified in applying
the factorization V = v,v, to the terms of the Born
series and writing the following expression:

f=h=vWoy — oW, + - -+, (6)

where W = v,G,v, .°
We may explicitly write the kernel W as follows:

1
W(q,, qs; k) = | dp ——————
(415 925 k) fppz—kz—ie
X v1(q1 — pvao(p — q2). (7)

One wishes to obtain an upper bound upon |W]| for
use in (6). It is convenient for this purpose to consider

5 The motivation for this factorization of ¥V in this context is that
the kernel W can be made square-integrable with appropriate
choices of v, and v, for a wide class of potentials ¥. The scattering
amplitude can be formally written

1
f=—nrwte

Theusual procedureisto writethe amplitudeasf = —[1/(1 + VG)1V.
The point is that VG, is too singular to be square-integrable in
most cases. As a consequence, relatively simple bounds upon W will
lead to more economical bounds upon f than are obtained through
bounds upon the usual resolvent.

JOHNSON

the function 7, defined by

1(q, 925 p) =fd9 L

"I+ b¥q — PP
X 2 : 218 ©
[1+ b6%(p — ¢2)°]
In Appendix A it is shown that, for s > £, there
exists a number N(s) such that®

N(s)

?EL(A),

where, for convenience, we have written
[(D) = 1/Q + A2p2),

One can now use conditions (4) upon », and v, along
with the inequality (9) to derive the following bound
upon |W]:

For every number ¢ such that 0 < € < , there
exists a number M(e) such that

Wiay, g 0] < 2O L _reny,

b (kb)
The details of this derivation are given in Appendix B.
For notational convenience let us define
p=MO 1
b (kb)*

We may now use (10) along with condition (4a) to
bound (6) term-by-term by the following:

170 ) = (@) < 206 318, ®)],
where -

g.(8) = f dpy - - dp,fias — o)

X fo(pr = o)+ f(Pu1 — P So(Pn — 42).
In Appendix C the following crucial result is shown
to be valid:
For every number s > &, there exists a number
M(s) such that

f dpfi(a — Dfip — D < ME)fq — ). (12)

As a consequence one can conclude that g,(A) <
[M(H*f,(A). Tt is then possible to establish the
following order relation in the limit kK — oo for fixed
angles:

®

(g1, 925 P) < &)

(10)

£(k, 6) — filk, 6) = 0( k;e) ©)

for € < }. We have thus established the desired
result.

SA=gq;—q.
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III. DISCUSSION

We have shown that if ¥ is factored subject to (4),
the limit (3) involving the corresponding scattering
amplitude and its first Born approximation is valid.
In this section a particularly general factorization is
exhibited, and a relatively simple set of sufficient
conditions for (3) is obtained.

Let us formally factor V(x) as follows:

vy(x) = 1/(x* + b%),
v,(x) = (x* + BHYV(x). 13)

One may compute the Fourier transform uv;(q)
exactly, and a formal expression for vy,(g) may be
obtained:

1(q) — _L _1__ sin 2= qb —qb/\/é

qb \/2 ’

vs(q) = b'V(q) + i [q V(@) (14)
One can easily verify that vl(q) can be made to
satisfy (4) with a suitable choice of C for any number
5> 0. The following conditions upon ¥V(g) are
sufficient to guarantee that v,(g) exists and is subject
to (4) for the chosen values of s:

Vgl £ b4f3(¢1)

S—éfs(q)’
14 “ ’ (13)
‘——-(qwq» < i),
d ld‘1
. ( 4 gy (q)]) < Cbf(g).

This particular factorization is relatively convenient
in providing a simple, though not conclusive, test
for the validity of (3). In a given case this factorization
might not be the most suitable choice to obtain bounds
of this type upon the scattering amplitude.

We have considered the class of potentials which is
subject to (2) and have shown that with restrictions (4)
the scattering amplitude converges to its first Born
approximation at high energies for fixed angles of
scattering. The restrictions (4) automatically eliminate
potentials ¥(x) such that

lim x® [V (x)| # 0,

0
for example, V(x) = 1/(x + b)% There is no known,
nonpathological potential ¥ (x) which is subject to (2)
and for which (3) has been proved incorrect. Our
restrictions (4) in a sense must be artificial and unneces-
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sary. One can prove that the following conditions
upon the suitably chosen potential factors v, and v,
are also sufficient for (3):

LACIIES C12/q 21,

| Lo@|<cpia@. a9
dq 2 2

for A< 1, A+ s> 3 We will not go into details
here; the techniques involved in establishing this are
the same as those developed here. Let us note, how-
ever, that these conditions implicitly contain the
requirements x*V(x) -0 as x — o and ¢*V(q) — 0
as g — . These limitations should be regarded as
due to the failure of a rather simple-minded technique;
it should not be considered in any sense as implicit
evidence that (3) is not correct.

The most distinctive feature here is that the con-
ditions (4), for example, do not imply or require any
underlying analytic properties for V(g) or V(x). In
other words, convergence of the Born series to the
first Born approximation has been established with
conditions placed upon ¥(gq) only on the real ¢ axis,
so that the analytic structure of V is irrelevant in this
case.
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APPENDIX A
In this appendix we derive the bound (9) for the
function I defined by (8). For this purpose it is
convenient to introduce the following integral
representation:

o) =Lwdap.(a)e-““m, (A1)

where
4p% 1
[(s) (4ab?)**!

The restriction s > $ is certainly sufficient to guar-
antee that f(g) is square-integrable over q, so
that its Fourier transform, which we write as f,(x),
exists and may be represented as follows:

—1/4ab>

Ps( )= —

Six) =Lwd°‘(47roc)%f>s(a)e‘”2-

One is justified in changing orders of integration to
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write / in the following form:

1(qy, q.; dx dyf, X dQ,
(G1, 423 p) = e )sﬂx yf(x)f(y)f
x exp [—i(qy — p) X — i(p — q2) - ¥]
-5 [ [a= apcptpcrnid
x J(&, B; P; 415 q2), (A2)
where

sin p |x — y}

J(o, B; p; ql,qz)—ﬂdx dy X —~ vl

% g lax +ﬁu2)e-i(az‘ r—aq1—y)
The following bound upon |J| can be obtained in a

straightforward manner?:

64 1 1
p o+ Bpt

We thus obtain a bound upon I of the form

2
e—A /4(a+ﬂ)'

V<

2567 1 f fdoc g 1
P’ DY [40°* Yo d (aB)* « + B
x exp [—(1/x + 1/8)1/4b* — A%4(x + B)).
One can bound I by

1< 2567 1 1 [J‘wﬁ_ e—1/4b2a]2
p* INOF (@b Lo ot
_ G4m [_P_(s _—_%T S4n

- p2b2 P(s) - p2b2'

(A3)

(A4)

Let us define new variables of integration 4 = « + 8
and v = 4af, and write

641r 1 f du —A%/8u
P’ [F(S)]2 [41?2]28

f dv 1 —u/b%
X ——'; —e .
o (uE—0v)? Ve

We split the internal integration into two parts:

u__é_v____l_e—u/bgv___H_l_J,
0 (u2 — D)% vs

f —u/bzv < \/2J‘u 2 dU ~u/b®y
0
V2
u

v) v° u ?
_<_ f dz zs——2 —~uz/b \/i F(S — 1)(b2/u)s—1

(A5)

where

v

7 A = q, — q, . For proof of the inequality, see P. Johnson, Ph.D.
thesis, Princeton University, 1967 (unpublished).

PORTER JOHNSON

and
2

J =fu dv 1 —u/bv
u¥2 (u? —v)é *

(2)sfu dv 1 (2 s—1/2

<\ 3 = —) .

¥ Jeiz(u® —v)* 2 \u?

There consequently exists constants C’ and C” such
that

du i w1, € 1
<35 f ““{ @+ 3—1}(1)2)28

If we require Ab > 1, we can find a number C such
that

c 1

hd p2b2 (A2b2)3 i
Thus, as a result of (A4) and (A6), the bound (11)
upon I is proved.

(A6)

APPENDIX B

Here we consider the kernel W(q,, ¢,; k) defined in
Eq. (7), where k is restricted such that kb > 1. The
bound (10) upon W will be established here.

From (7) one can derive the following expression
for the imaginary part of W

k
Im W =" f dQu:(q, — pvap — 45)-
2 pl=k
Conditions (4a) upon v; and v, are used, along with

the inequality (9),to get the bound

’TTC1C2N(S)f
2b kb’

The" quantity Re W may be expressed through a
principal value integral

ki—e Pz
Re W =1lim {f dp —

e~otlJo Pt — Kk

m W] < (A). (B1)

X f dQ,vi(q1 — pa(p — q3)

<) 2
4
d
+fk’+e P PP — K
deQ,,vl(ql — p)vs(p ~ ‘12)}-

Through a change in variables, we can rewrite Re W
in terms of the following nonsingular integral:

' du

ou*—1

x {u? f dQp(lq — ukos(ukl — gg))

“Jome- e

ReW =k

LYY K~ g
u

)}
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(The integrand clearly vanishes for u = 1.) We now
make the decomposition Re W = H + J, where

1
H=kf dufdﬂlvl( )vg(q‘_,——l—kl‘)
0 u

and
1 u2
J=k| d R
[ 1
with the definition

fu) = f dQl{vlaql — ukll)oa(las — ukl])

fo-2u)efom2u)

One can easily obtain a bound upon |H| through the
use of conditions (4a) and the inequality (9):

N(s)
(kb)*
We now bound |J]| using Holder’s inequality.® For this
purpose a number r > 2 is chosen and a number s is
defined by (1/r) + (I/s) = 1. Holder’s inequality
leads to the following bound on |J|:

oI < o] [ lf(u)q”'[ [l o 0]

One may bound the former integral in the same manner
as above:
2N(s)

fo duit 17 < 2

The latter integral, however, must be treated with more
delicacy. Let us use the conditions (4a) and (4b)
along with the inequality (9) to obtain the following
bound upon | f'(u)]|:

If' )] < —>=

q — Lk
u

ql_lkl
u

|H| <

C,Cof (D).

1/s
CiCof (D).

4N(s) c102
b )

One may now use the inequality

1
1@l < f dv |1'(0)]
to obtain the upper bound
c.c, T2 = 9F

1
d
Lu( e HO et S

As a consequence we have bounded |J]| as follows:

4N(s) C,C, | D2 — 9
b (kb)Vr| T(4 — 25)

8| dz A@)B@)| < {f dz | 4@\ }1. {f dz|B2)|*} /= with r, s > 1
and (1/r) + (1/s) = 1. See G. H. Hardy, J. E. Littlewood, and G.
Polya, Inequalities (Cambridge University Press, Cambridge, 1964),
pp- 139-143.

4N(s)

f(A).

1/s

FEGY2

M <
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We are now correct in concluding that (10) is valid
with € = (1/r) < (1/2), where M(e) is given by the
formula
I
M(e) = C,CaN(s) (3 +4 [F((Zﬂ))] ) (B3)
with g =1 — [¢/(1 — )]
APPENDIX C

Let us consider the function Q,(A) defined as
follows®:

0,(8) = f dofq — DS —». (€D

We will establish the following result about Q,:
For every number s > § there exists a number N(s)
such that

0,(8) < N)f(D)- (€2
For proof of this result it is convenient to use the
following “generalized Feynman identity” 1°:
11 1
A°C* B(s, p) 21

+1
xf du
-1
Then one may -write

Q,(A) =

(14 w1 —uyp!
[A(L + u/2) + C(1 — u/DF™"

1
B(s, 5) 2%t

x f dp{l + b¥q — P (L—J;—”)

+ b¥(p ~ r)z(1 > “) }‘

For s> 4, the p integration certainly converges.
It may be explicitly performed so that one obtains

du(l —uH™

B3,2s—3%) 1 4n
A) = A2 e8 T 2) 1 3T
28 B(s,s) 2% b®
1 281
x [t (o
o[l 4+ (1 — ud)A%b?/4]%"
We see immediately from (C3) that, for s > %,
0,(4) < B(2 s — 2) (C4)

It is convenient to use the following inequalities to
bound Q,(A) as given in (C3):

(- u?) < 21 — u),
[1 + Az”2(1 - uz):l < [1 + Azbza - u)} -

® 0, depends only upon A = g — , as is seen below.
10 B(x, y) = j}) dt =~}(1 — 1)¥1is our definition of the Beta func-
tion. See I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals,

Series, and Products (Academic Press Inc., New York, 1965), p.
948fT.
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One obtains
47 1 B §, 2§ — 3 1 s—1
Qs(A) S _g e (2 5 2)f do v 2741243 *
b®2°  B(s,s) Jo[l 4+ vA%b?/4]% 5
Under the restrictions s > &, we are allowed to write
4 (2 \*(® dzz™' B(E, 25— %)
s A S "y ( ) - )
QB <5 ) ), (1 + 2%t B, )
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or

0®) < (—2—)33(& s=DBG 25 =8 (o)

b* \A?p? B(s, 5)

As a result of (C4) and (C5), one may conclude that
(C2) is valid.
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A pure -group-theoretical description of nonrelativistic interacting systems in terms of irreducible
representations U(D) of a so-called dynamical group D is investigated. The description is assumed to be
complete in the sense that all observable quantities of the system can be calculated from U(D) in the
same way as the nonrelativistic free particle can be identified with an irreducible representation U(Gy)
of the central extension of the inhomogeneous Galilei group G.. D depends on the interaction. It is a
noninvariance group and it contains a spectrum-generating algebra. Our problem is to connect a repre-
sentation of an arbitrary abstract group with a complete description of an interacting system. This needs
some physically motivated principles. Some such principles are proposed. We assume that the interaction
can be turned off, which implies that U(D) and the physical representation U(G) of the free-particle
group Gy can be limited into each other. If this limitation can be formulated without violating super-
selection rules, ‘i.e., mass and spin conservation in nonrelativistic systems, the group D! is called a
limitable group. Properties of these groups are derived. An explicit construction of a limitable D’ is
given by embedding the free-particle group G into a larger group. A discussion of all embeddings leads to
the special choice

D'~ Gy(N)(x Sp(2N, R).

G%(N) is the central extension of the pure inhomogeneous Galilei group in N dimensions and
Sp(2N, R) the noncompact real form of the symplectic group. A representation theory for D* is estab-
lished using the technique of Nelson extensions, together with some properties of the universal
enveloping algebra of the Lie algebra of G%(N). Our main success is that D! is a limitable dynamical
group and that the physical system described by D* and the physical representation can be calculated
uniquely from the proposed principles. The group-theoretical description is equivalent to nonrelativistic
quantum mechanics for a spinless particle in N dimensions with an arbitrary second-order polynomial
in Py, Q;,i=1,---, Nas Hamiltonian. The possibility of further models is discussed.

INTRODUCTION

1. In particle physics it is reasonable to consider
internal and space-time symmetry groups as a first
step of a pure and complete group-theoretical descrip-
tion of the interaction in the sense that all observable
quantities of the system can be derived from one
irreducible representation of the so-called dynamical
group D."7 The interaction usually given by a
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Hamiltonian is replaced by a group, in the same
way as one can try to translate the interaction into a
certain singularity structure of the S matrix. A dynam-
ical group is a noninvariance group; it does not
commute with the corresponding S matrix and it also
contains a spectrum-generating subgroup because it
describes scattering states as well as bound states.
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For the free relativistic particle, a group-theoretical
approach is familiar; its space-time properties can be
calculated from one irreducible representation of the
Poincaré group.

A realization of this program for interacting systems
proceeds in three steps:

(1) Choose a suitable abstract group D;

(2) Determine its physical representation Up,(D);

(3) Identify the physical system described by this

representation.

There are several attempts to do this. A plausible
choice for D is, for example, an embedding G of
internal and space-time symmetry groups S and P,
respectively, or an algebraic enlargement P of P such
that P is a group contraction of P. From additional
principles and from model considerations, the physical
representation must be derived together with a solu-
tion of the identification problem. It has been proposed
to relate a certain representation of 2 to the physical
mass spectrum® (which is in good agreement with
experiments) and to consider, as in field theory,
suitable matrix elements of G as vertex parts or form
factors.®

To have some more information on the physical
background of these additional principles necessary
for a solution of steps 2 and 3, it is reasonable to put
solvable models into this formulation. This is done in
the following sections. We present some methods and
nonrelativistic examples for interpreting an abstract
group as a dynamical group, so that the physical
system described by the group and the physical repre-
sentation can be calculated from basic principles, and
so that the group-theoretical description is complete
and equivalent to a quantum-mechanical formulation
by a Hamiltonian. Our intention is not to explore the
group-theoretical structure of certain nonrelativistic
systems, but to derive in the reverse direction the
physical system and the physical representation
belonging to a given abstract group.

2. We discuss in Sec. 1 the dynamical group of the
free quantum-mechanical particle in N dimensions,
which is given by a central extension Gy of the N-
dimensional inhomogeneous Galilei group, and we
formulate those aspects of its representation theory
which are relevant for the identification problem.
Physical restrictions for a dynamical group of inter-
acting systems are obtained in Sec. 2. We translate
the fact that it is possible to vary the interaction
strength A within a Hamiltonian H[A] and to turn off
the interaction by putting 4 — 0, i.e., H[A] 55> H°,
with H° being the free Hamiltonian, into a property of

8 C. Cocho, C. Fronsdal, H. Ar Rashid, and R. White, Phys.
Rev. Letters 17, 275 (1966).
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the dynamical group D[A] belonging to H[A]. For-
mally, this implies a limitation between D[A] and G.
If a limitation of an abstract group into Gz can be
mathematically realized, the group is called /imitable
and it is reasonable to demand that dynamical groups
be limitable. Because mass and spin conservation are
superselection rules in nonrelativistic quantum me-
chanics, we restrict the limitation between D[A] and
Gy so that mass and spin conservation holds. We
assume furthermore that the Hamiltonians and the
generators of the corresponding degeneracy groups
of all systems described by D[A] are contained in
the Lie algebra of D[A). With these principles a
group-theoretical formulation for some nonrelativistic
systems is given in Sec. 3. We construct (step 1) a
dynamical group D* by embedding G in a semidirect
product
D'~ GY%(N) (x Sp(2N, R),

with G%,(N) the central extension of the inhomogene-
ous pure Galilei group in N dimensions and Sp(2N, R)
the noncompact real form of symplectic group in 2N
dimensions. A representation theory of D is formu-
lated using the method of Nelson extensions. It is
shown that D! is a limitable group. The limitation is
given for N = 1 by a generalized group contraction
and for N > 1 by a more formal procedure. It deter-
mines, together with mass and spin conservation and
with mass and spin of the free particle, the physical
representation  Up, (DY) (step 2). The generators of
Upy(D?) can be written uniquely—up to equivalence—
as functions of momentum and position operators
P, Q;,, i=1,--+,N. Therefore, the identification
of Up,(D") is possible (step 3). It turns out that D! is
the dynamical group of all spinless systems with
Hamiltonians being second-order polynomials in P;,
Q;,, i=1,--,N. Some generalizations of the
spinless model are discussed in Sec. 3E.

3. The proposed method does not depend on the
existence of a degeneracy group E which was used to
construct spectrum-generating groups for the three-
dimensional oscillator®~'? with £ =~ SU(3) and for
the hydrogen atom*13-1% with E, ~ SO(4) and
E,~ SO(3,1) for the discrete and continuous
spectrum, respectively, and for the strong coupling

% A. O. Barut, Phys. Rev. 139, B1433 (1965).

1¢ R. C. Hwa and J. Nuyts, Phys. Rev. 145, 1188 (1966).

11 G. Bisiacchi and P. Budini, Nuovo Cimento 44, 418 (1966);
47, 792 (1967).

12 §. 8. Sannikov, Zh. Eksp. Teor. Fiz. 49, 1913 (1965) [Sov. Phys.
—JETP 22, 1306 (1966)].

13 A. O. Barut, P. Budini, and C. Fronsdal, Proc. Roy. Soc.
(London) 106, A291 (1966).

14 A. Bohm, Nuovo Cimento 43, 665 (1966).

5 R. Musto, Phys. Rev. 148, 1274 (1966); R. H. Pratt, and T. F.
Jordan, Phys. Rev. 148, 1276 (1966).
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theory.'%'” The attractive idea of this approach was to
evaluate the group-theoretical structure of these
systems and to find a minimal embedding G of E
such that the set {U(E)} of irreducible representations
which are physically present is contained in a repre-
sentation U(G), i.e., U(G) | E = {U(E)}, and that the
Hamiltonian is a function of Casimir operators of E
such that the desired eigenvalues are obtained. The
existence of G with these properties is a well-defined

mathematical problem. G is a noninvariance group -

and its physical representation is calculated from the
known quantum-mechanical solution. The result is
even unique if an additional parity transformation is
introduced. The idea of putting the Hamiltonian into
the enveloping algebra is in some sense complementary
to the above approach, where H is one of the gen-
erators in Up,(D%). For a complete description one
needs two irreducible representations of G ~ Sp(6, R)
for the oscillator and for the hydrogen atom one
irreducible representation of both spectrum-generating
groups G, ~ SO(4,1) and G, ~ SO(3,2). It was
shown!® that the construction can also be extended
to incorporate electromagnetic transitions if G, is
embedded into SO(4,2). These group-theoretical
recalculations of quantum-mechanical properties are
useful and strong tools for a relativistic generalization
of the above systems.

1. THE DYNAMICAL GROUP OF THE
FREE PARTICLE

In Secs. 1A and 1B we summarize and generalize
some mathematical results on projective representa-
tions of the N-dimensional in the homogeneous Galilei
group G(N). The physical aspects and the identification
of G(N) as a dynamical group for the nonrelativistic
free particle are discussed in 1C.

A. Central Extension G g(N) of the Galilei
Group G(N)

1. Let u, v be any two vectors of an N-dimensional
vector space Ry and let R be an orthogonal transfor-
mation R € SO(N) in Ry and let 7 be a real number.
The N-dimensional Galilei group G(N) is given by
the set of elements g = (R, u, v, ) with multiplication
rule

g8 =Ruv,nR,w,v,7)
=(R-R,u+ R +7v,v+ RV, 7+ 7)
and identity e = (1,0,0,0). The group has an

18 T. Cook, C. J. Goebel, and B. Sakita, Phys. Rev. Letters 15,
35 (1965).

17 J. G. Kuriyan, Ph. D. thesis, Syracuse University (1966).

18 A O. Barut, Phys. Rev. 156, 1538, (1967); A. O. Barut and H.
Kleinert, Phys. Rev. 156, 1541 (1967).
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(N + 1)-dimensional representation in Ry, € (X, #);
g (x,t) = (Rx + ut + v, 7 + 7). The interpretation
of the subgroups {(R, 0, 0, 0)} ~ SO(N) as N-dimen-
sional rotations, {(1, 0, 0, 7)} ~ Hand {(1,u, 0, 0)} ~
P, as time and space translations, respectively, and
{(1,0,v,0)} ~ Qy as pure Galilei transformations is
obvious. The Abelian subgroup of pure inhomogeneous
Galilei transformations Py ® Qy is denoted by G°(N).
The dimension of G(N) is d = }N(N + 3) + 1.1°

2. G(N) possesses strongly continuous unitary
projective representations?® which are not equivalent
to vector representations and which can be written
at least locally, i.e., in some neighborhood of
e € G(N), as representations ‘“‘up to a factor” with a
group relation

U(®)U(g) = »(g, 8 g)

= exp [¢(g, 8]  Ug-g), & 8 €G(N),
including the local factor w and the local exponent ¢,
respectively. The local exponent ¢(g,g") and G(N)
can be combined in a bigger group G1(N), the local
group of G(N). Take a fixed ¢ and consider the set
of all pairs (6, g) with 0 being any real number and
introduce a multiplication for (6, g) by

0,8 0.8)Y=0+0+ 9(g.8)8"8)

Then GEI(N) is given by {(0, g)} and it is a central
extension of G(N). The set Fy = {(0, €)} is a one-
dimensional subgroup and GYYN)/F, is locally
isomorphic to G(N). All projective representations of
G(N) can be derived in two steps?®:
(1) Calculation of all local factors w(g,g’) or
exponents ¢(g, g);
(2) Construction of all vector representations of
GYI(N).

3. The determination of local factors is an algebraic
problem. In general, different ¢(g,g’) can lead to
representations of the corresponding local groups
which are equivalent. Therefore, the set of all ¢(g, g’)
is decomposed into equivalence classes £ such that
@(g,g) el lead to equivalent representations of
G'Z)(N). A parametrization of £ is given by a real
number y, — < y < + o (Appendix A), and hence
also the local groups GY¥)(N) are classified by y. Take
for each y the set of all irreducible representations
U(GI(N)) of GRA(N); it turns out that this set is
independent of y and it suffices to construct all
irreducible representations for, e.g., y = 1. GJI(N) is
written as Gg(N). The eigenvalues of the center in

19 je groups are denoted by G, D, SO(N), etc., the corresponding
Lie algebra by G, D, so(N), unitary faithful strongly continuous
representation of G by U(G), and integrable representations of G by

8 etc.
20 y, Bargmann, Ann. Math. 59, 1 (1954).
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G(N) determine the equivalence classes as well as,
partly, the irreducible representation. With this result
a representative local factor in each equivalence class
is

w(g,g)=expi-im@m:RvV — v. R + 7'v. RV).
For the corresponding Lie algebra we find (the sub-
groups SO(N), H, Py, Qy, F, are generated by
dyys Pis Qs Hyy i =1, , N, O

[4:;, diel = 551: die — O, d;, + 0, d:p’k -

[P, Pl =0; [0, Q] =0,

[d:;, P = 6570 Py — 6,P;,

[dii, Ol = 61kQ1 — 04Q;s

[di;» H)l = 0; [P, Q;] = 6,,C,

[P;, Hol = 0; [Q;, Ho] = P;.
To include also reducible representations, the center
element is written as C. Note that the algebra Gz(N)
coincides with G(N) for C = 0.

4. There are two important semidirect product
decompositions of Gz(N). Let GJ,(N) be the algebra
spanned by (Py ® O Qu:

[P;, ;] = ,C,
[P, P)) = [Q;, Q;1 = [P;, C] = [Q;, C] = 0.
The simply connected group which possesses G%(N)

as Lie algebra is called central extension of the pure
inhomogeneous Galilei group, and we have

Gg(N) ~ Gx(N) (X (SO(N) ® Hy).

Consider the subgroups G, = {(0,1,u,0, r)} and
G, = {(0, R, 0, v, 0)} with Lie algebras Py ® Hy @ C
and Qy + so(N), respectively. Then the decomposi-
tion '

6ie dik:

Gp(N) ~ G(N)(X Gy(N)

is a regular semidirect product between G, and G,,
because G, is Abelian and G, separable and locally
compact. For practical calculations with the last
decomposition the choice

(g, g) = vRu' + }7'v?

for the representative in the local factor is suitable
because then the multiplication

& 8= (03 l’ u, 0’ T)(O, R’ 0’ v, O)
= (0: Rs u’ v’ T)
is quite simple.
B Representation Theory for G;(N)

1. The regular semidirect decomposition suggests
the application of Mackey’s theory of induced repre-
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sentations,?! which is useful if the representations of
the corresponding little groups are known. The little
groups G, of Ggx(N) with C=im-1 are easily
calculated. They depend on the character group of G,
and on the eigenvalues m and V of the Casimir
operators C = im - 1 and

lN
C(I?o = H0C+EZP129
=1

ie., G™V; it can be shown that G™V ~ SO(N)
holds independently of m, ¥ (Appendix B). Then the
calculation of all irreducible representations U(Gz(N))
is a technical question and already known for the
three-dimensional case.?>?®* The generalization to
arbitrary dimensions is straightforward. Because the
representations are “induced” by a fixed irreducible
representation of SO(N), they are classified by the set
s={s,, --,s,} of r=[N/2] highest weights and
furthermore by those Casimir operators which are
functions of generators in G, only, ie., C and C{3 .
Hence the set [m; V;s = {5y, - ,s,}] classifies all
irreducible representations U(G z(N)™¥1 of Gz(N).
Unitary projective representations of G(N) are given
by U(0, R, v, u, 7) and the irreducible ones are classi-
fied by [m; s] because the definition of equivalence
between projective representations* implies that
different V' but equal m, s lead to equivalent repre-
sentations U(G(XN)). In Sec. 1 C.1 it is shown that the
constant V in U(Gg(N)!™V:%) js physically unim-
portant.

2. Consider the subgroup G%(N) with Lie algebra
G%(N). Irreducible unitary representations of G%,(N)
and irreducible integrable representations of G9(N)
are known by a theorem of von Neumann? and by
Lemma 1 of Ref. 26, respectively. There is—up to
unitary equivalence—only one irreducible representa-
tion U(GY% (N))™ determined by m or by C = im - 1,
which is furthermore equivalent to the Schrodinger
representation in quantum mechanics. Take now
any representation U(G%(N)) with C=im-1 in a
separable Hilbert space; then it can be decomposed
in a countable set of equivalent irreducible representa-
tions U(G%(N))t™. We call such representation quasi-
irreducible if the multiplicity n(m) of U(GY%(N))™
in U(G%(N)) is finite and we denote this by

21 G. W. Mackey, Am. J. Math. 73, 193 (1951); Ann. Math. 55,
101 (1952); Bull. Am. Math. Soc. 69, 628 (1963); Chicago lecture
notes (1955).

22 J-M. Lévy-Leblond, J. Math. Phys. 4, 776 (1963); see also A. S.
Wightman, Rev. Mod. Phys. 34, 845 (1962).

23 J. Voisin, J. Math. Phys. 6, 1519 (1965); 6, 1822 (1965).

24 H, Neumann, Diplom-Arbeit, University of Marburg (1966);
A. Hartkdmper, Diplom-Arbeit, University of Marburg (1966).

25 J. von Neumann, Math. Ann. 104, 570 (1931).

26 H, D. Doebner and O. Melsheimer, Nuovo Cimento 49, 73
(1967).
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U(GYL(N))tmntm)_If a representation U(Gg(N))m:¥iel
is restricted to G%(N), we get a quasi-irreducible repre-
sentation U(GL(N))m =1 with n(m) = d(s) if d(s)
denotes the dimension of the representation of the
corresponding little group.

Instead of s also eigenvalues of a set of Casimir
operators Cp, of Gy(NV) can be used. For N = 3 the
representation is characterized, e.g., by three Casimir
operators:

3
ClV=C=im-1; C?I’O=H0C+§2P§=V-1;
i=1

2
c§’=(d+~2~i—nl’x9) =s(s+1)-1.

The last one defines the representation of the little
group SO(3).
Collecting the results we have:

Theorem 1. Irreducible unitary strongly continuous
(vector) representations U(Ggz(N)) of the central
extension of the inhomogeneous Galilei group in
N dimensions Gg(N) are uniquely classified by
[m; V;s={sy, ' ,s,}] with s denoting the set of
highest weights for the corresponding representation
of the little group SO(N) of Ggz(N) and with
—~o < m, V < +oo. The restriction to G%(N) leads
to a quasi-irreducible representation U(G(N))[mn(m]
with multiplicity n(m) given by the dimension of the
representation space of the little group SO(N).

C. Gx(N) as Dynamical Group for the Free
Particle

1. The relation between Gx(N) and quantum
mechanics is well known for N = 3,2223.27-2 for
arbitrary U(Gg(N))l™V>4 leads to a complete descrip-
tion of a free particle with mass m and spin s.
Hence Gz(N) is its dynamical group with a physical
representation determined by mass and spin. The deri-
vation of this result is straightforward. Consider the
case N = 1. We describe the free particle with mass m
by its Hamiltonian H° = (i/2m)P?and by position and
momentum operators ¢ and P with commutation
relation [P, Q] =im-1. The algebra spanned by
{P, Q, H®, C} is isomorphic to Ggz(1). Then we con-
struct in L%(— o0, 4 c0) the Schrodinger representa-
tion of this algebra which leads to the Schrodinger
equation of the free particle. One can prove? that
this representation of Gg(1) is integrable to an
irreducible unitary strongly continuous representation

27 H. Weyl, The Theory of Groups and Quantum Mechanics
(Dover Publications Inc., London, 1931).

28 J_ V. Lepore, Phys. Rev. 119, 821 (1960).

29 M. Hammermesh, Ann. Phys. (N.Y.) 9, 518 (1960).
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of the group Gg(1)*® and hence the solution of the
free-particle problem is equivalent to the construction
of an irreducible representation of Gz(1). The eigen-
value V of C3 is an additive physically unimportant
constant in H° and it suffices to consider representa-
tions U(Gg(1))™® only.* Mass conservation is a
superselection rule and is related to the center in
Gg(1).
2. For N > 1 the degeneracy group SO(N) of

0 i 3 2
H =2—‘2Pi
mi=1

must also be considered and generators d;; = i(P,Q; —
P;Q,) additional to P;, Q;, C,i=1,--, N appear.
The algebra arising is isomorphic to Gg(N). The
Schrodinger representation is constructed as usual and
the integrability in respect to GY(N) ensures in
this case also the integrability of Gg(N). Then
U(Gg(N))tm0:01  describes the N-dimensional free
particle with mass m and spin 0. To introduce spin
for N > 3 in the same way as for N = 3, one adds
to the orbital part d;; of SO(N) a spin part s,; given
by a d X d matrix, being the corresponding generator
to d;; in a d-dimensional irreducible representation of
SO(N) characterized by 5,32 and one needs a Hilbert
space over vector-valued functions as representation
space. The procedure corresponds uniquely to the
construction of U(Ggz(N))™%, s is interpreted as
spin for N = 3 and for N > 3 as “spin content.” The
case N > 3 is not related to a physical free particle.

2. ON THE STRUCTURE OF DYNAMICAL
GROUPS IN QUANTUM MECHANICS

Dynamical groups for nonrelativistic systems are
physically restricted by a limitation property and by
mass and spin conservation. A precise formulation of
a limiting procedure between dynamical groups for

30 A rigorous formulation of the representation problem needs a
domain assumption because P and/or Q are necessarily unbounded
operators. In general, the physical content of a representation gg(1)
of G z(1) depends on the domain 2, < % on which the representation
is defined. The integrability of g (1) is necessary and sufficient for
g5(1), being unitary equivalent to the Schrédinger representation
Ref. 26.

31 The same result is obtained if the free particle is defined via a
unitary irreducible .projective representation of G(N) labeled by
m, s instead of via a unitary irreducible vector representation of
G(N); see Sec. 1B.1.

32 The reverse problem of how to identify an irreducible repre-
sentation of the abstract group Gz{N) with a physical system can be
solved if the physical position, momentum, and angular-momentum
operators are defined in the representation space of G(N) by their
transformation propertiesunder transformationsg = (0, R, u, v,0) €
G(N). Because there are generators in G z(N) which have just these
properties, they can be identified with the physical operators. The
remaining generator H, is identified from Cg{; . For the uniqueness
of this construction we refer to Ref. 33.

33 H. Araki, Einfithrung in die Axiomatische Quantenfeldtheorie I
(Ziirich, 1962).
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interacting and free systems is given in subsections
2A and 2B. Consequences of mass and spin conserva-
tion and the identification problem are discussed in
2B and 2C, respectively.

A. Interaction Type and p Limitation

1. Suppose that a dynamical group D exists for a
class of interacting systems with Hamiltonians H of
the following type:

(x) Let H be a function of P,, Q;,i=1,"--, N
and of a set of real interaction strengths 1=
{50, Zp}a €.g

?
H =E'3'iVi(Pla.'

=1

) QN)3

with linearly independent functions V;,i=1,:--,p,
such that H(P,,- -+, Oy, 4) is essentially self-adjoint
and consider the A dependence of H. In general,
different 1 will lead to different interactions, and to
collect all of them we define the interaction type ¢ of
H(P,, < ,Qu,4) as the set of those linearly inde-
pendent functions which can be obtained from
H(P,," -+, Qn, A) by letting A run over all “allowed”
values leading to essentially self-adjoint H. It is
convenient to introduce a p-dimensional A space
spanned by the components of 4 = {4,, -, 4,} and
the subset A, of those points which correspond to
allowed values of 4. The type ¢ is denoted as upper
index and H is written as H'[A}. If

t={Vi(Pl"”5QN)si= L}
contains a finite number of linearly independent
functions, then the interaction type is called finite.

We restrict ourselves to Hamiltonians of this type,
e.g., to

D R
H=leiVi(Pla"'>QN)

with t = {(V(P,, - +,0p), =1, -, p}. The func-
tions V;,i =1, -+, pcan be considered as basis in ¢
and there are points A%, ---, 4% in A space with
V; = H'{}].
(B) Let
HO — __l_ %PZ
m&T!
be the Hamiltonian of the free particle and assume that
the interaction part in H*[A] can be turned off by
letting 4 — A° with H® = H[1%, ie., that H'[A] is
limitable into H° This means in A space that there is
a curve A(¢) (continuous and continuous differentiable)
connecting an arbitrary point 1= A(1)e A, with
A = A(0) and H'[A(e)] —> H'[A(0)] = H®. As one

&0

knows from quantum mechanics, this limitation is
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discontinuous in respect to the properties of H'[2];
take as example the spectrum of H. Physically, the
process may be possible by some experimental device,
in the sense of an asymptotic condition or merely as
gedankenexperiment.

2. The A and ¢ dependence of the above Hamiltonians
is formally taken over to the corresponding dynamical
groups D![2]. The mathematical meaning of this
dependence is specified in the following. Since discrete
subgroups are not interesting in D*{1], we pass over
to the corresponding Lie algebras D*[A] with finite
dimension 7y,

It is reasonable that the generator H'[2] of quantum-
mechanical time translations is contained as generator
also in D[4},

H'[A] € D*4], t))

or that a basis exists in D*[A] such that H'[4] in the
physical representation (see 2B) is equivalent to one
of the generators in D?[1]. Because.a degeneracy group
E'[A] of H'[A] is directly related to the spectrum of
H[A], which can be calculated by (1) from the
physical representation of D'[4], it is plausible that

E'[A) © D[4} 2

Both postulates are fulfilled for the free-particle
dynamical group.

3. To utilize the limitation H[A] — H° we consider
the A space and the manifold of algebras D*[1] over
A, with fixed . H[A°] = H® implies D'[1%] ~ G4
for any type f. Because it was supposed that H'[A],
A€ A, is limitable and that it possesses a dynamical
group D*[1], there is also a limitation between D*[1)
and Gg and a set of dynamical algebras exist, defined
on a curve A(€) € A, which approaches Gy if € > 0;
Me)— A0) = 1%, ie.,

DA 5> Gy Mo €A, )
Postulate (2) implies that all degeneracy algebras
E*[A] which can be obtained by letting A run over A,
are subalgebras of Df[A]. It was already mentioned
that this limitation is not continuous and one expects
that D*[A(e)] changes the type, i.e., the constants of
structure, and also its dimension ny, along the curve
A(e). However, a curve A(e) may exist such that there
is up to isomorphism of D*[] only a jump for e = 0.
We define therefore the following:

The Lie-algebra of a dynamical group describing
interactions of finite type ¢ is called limitable into
the Lie-algebra Gz of the dynamical group of the
free particle if a continuous and continuous differ-
entiable curve A(¢) exists in the allowed region of
A space, spanned by the interaction constants, such
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that

D'fA(e)] — DA0)] ~ G 4

D*(4) is called p limitable into Gy, if, furthermore,

DHA(e)] ~ DA(ep)); 0< ¢, 6 < 1. ®)]

The finite interaction type of H'[A] is a necessary
condition for D[] being finite-dimensional because
there are at least p different generators in D*[A] corre-
sponding to H;, i =1, -, p and therefore n,, > p.
An example for p-limitable algebras is given in Sec.
SD.1.

4. We add the following remarks:

The definition of limitable or p-limitable algebras
does not include a mathematical prescription to
perform the limiting process. Therefore we cannot
disprove any noncompact group to be a possible
dynamical group. An exploration of limitation proc-
esses between Lie algebras®* and between representa-
tions of Lie algebras would be useful and is necessary
for a rigorous treatment.

A simple formulation of p limitation between two
algebras L and L' is a A dependence of the constants
of structure in L, ie., adl[1] = (adL)[1], as first
mentioned by Segal® and later used by Inoni
and Wigner® in a special case. Take a curve A(e)
in the space spanned by the constants of structure of
L such that L{A(e)] &~ L[A(ey)], 0 < ¢, € L 1, but
LEA(€)] 7> L' 5 L and ask for all L’ which can be
obtained with an e dependence of polynomial type
(X;, i=1,---,ny are generators of L)

(adX;)’{‘[e] = (a dXi)’l‘[ 1]emetmi—m

with m;, i = 1, - -, ny, real and fixed, the so-called
p contraction.?” The A, € dependence of the constants
of structure can be taken over also to the generators

and vice versa. Obviously a p contraction implies a’

p limitation. The method is restricted to a limitation
of Lie algebras with equal dimensions.®® From some
recent results®® we guess that there is only a small
number of algebras not isomorphic to Gy which can
be contracted into Gy .

The above limitation is not related to a recently

3¢ M. Gerstenhaber, Ann. Math. 78, 267 (1963).
35 J. Segal, Duke Math. J. 18, 221 (1951).
" '3 E Inoni and E. P. Wigner, Proc. Natl. Acad. Sci. U.S. 39, 510
(1953).

¥ H, D. Doebner and O. Melsheimer, Nuovo Cimento 49, 306
(1967).

38 To overcome this difficulty 2 p contraction of L can be used:
LU @ A with A a (np — np’)-dimensional Abelian algebra. A
necessary and sufficient condition for this process was derived in
Ref. 37.

3% M. Levy-Nahas, J. Math. Phys. 8, 1211 (1967); R. Hermann,
Commun. Math. Phys. 3, 53 (1966).
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discussed level model* based on the observation that
the dynamical groups of the free relativistic and non-
relativistic particle and the group structure of classical
mechanics are related by a sequence of Inonii-Wigner
contractions.

If for two interaction types, with £, > ¢,, D2 > Dt
also holds, then it suffices to discuss D* or in general
the maximal type t,, of a class 7,;, © - -+ > ¢, with
Dixa> ... > D4 (see 3D.1-4). An embedding of
D' in D% with #, 1, is possible only in special cases.
The existence of an algebra for ¢, and for ¢, with
t, N 1; © H® does not imply an algebra for 1, @ 1,.

B. p Limitations for Representations

1. So far, the structure of abstract dynamical
algebras D‘[i] has been analyzed. However, the
physical system is described by a representation of
D*{4] and therefore the limitation between D*[4] and
Gz must be reformulated as a limitation between their
representations. Denote irreducible representations of
D*[A] and of Gy by @*[2; ¢] and gg(m, 5), respectively,
with ¢ = {¢;,** -, c;} being a set of numbers, say
for simplicity of invariants, characterizing the
representation.*! Then the limitation is formally given
by

d'Ti(e); C)—> gxlm, s); m,s; M) € A, fixed. (6)

On the right-hand side of (6) not only the algebra
but also the representation is fixed*? and one obtains
by mass and spin conservation a relation between
some of the invariants of D¢[4] and Casimir operators
C and C%) of G with eigenvalues determined by m
ands = {s;, -, s,}. Because both conservation laws
are valid for any (skew-adjoint) Hamiltonian, it must
be possible to calculate m and s from d*[4; c] also.
The result is independent of A(¢) and we assume that
m and s are given by Casimir invariants C}, and C{,
of D*![4] with constant eigenvalues during the limita-
tion. It is reasonable that C! is limited into C and
Cl, into C% or even that C/ = Cand C},, = C[3.
Therefore from ggx(m, s) at least some of the ¢; in ¢
are known, which is denoted by c(m, 5), and d*[4 (¢);
¢ (m, )] can be limited into gg(m, 5) without violating
mass and spin conservation.

2. Casimir operators of D? which are not determined
by and s are in general not fixed during the limitation

40 M. Flato and D. Sternheimer, J. Math. Phys. 7, 1932 (1966).

4 The restriction to irreducible representations and the as-
sumption that the representation can be labeled by Casimir operators
is not essential. Note that for reducible ones an embedding
D?[A] of DY[A] with ¢ > r may exist such that d*'[A";c’] is irreducible
and that the branching rule d*{A; ¢’} | d*{4; c] leads to the desired
aA; c] content (see 3D.1).

42 The limitation between representations is only loosely related
to a limitation of the corresponding abstract algebras (see 3D.2).
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= c(A(€); m, 5).* Then they depend uniquely on A(¢)
because there is only one physical representation for
given A(e) € A, characterized by cp,(4; m, 5). The same
result can be derived if one starts with gz(m, s) and if
an interaction with finite type ¢ is turned on. Then the
system is described uniquely by d*[4, cp;(4; m, 5)] and
one finds the relation ¢ = cp,(4; m, s).

3. For a more detailed discussion of (6) it is con-
venient to introduce the space I' spanned by the
components of ¢. Then ¢ = c¢(A(e); m, s) is a curve
in ' and to each curve A(e) € A belongs a curve
c(e) e I'. We define the following:

Let D?*[A] be limitable or p limitable into G on a
curve A(¢). Take a fixed representation gz(m, s). Then
d'[4; ¢l is called limitable or p limitable into g5(m, s)
if a curve ¢ = ¢(A(e€), m, s) exists such that

d'[A(e), c(A(); m, 5)] ——> gg(m,5); m,s fixed (6')

holds and if mass and spin conservasion are valid.
If the restriction of d*[A(€); c(m, 5s)] by p limitation
and by mass and spin conservation is already so
strong that only one representation is obtained, then
the p limitation is called unique and the corresponding
value of ¢ = cp,(4; m, 5) is identified with the physical
one. This is the case if there is for any A(¢) € A, only
one possible curve in I" space.

The p limitation seems to be a natural property of
physical dynamical algebras, for a small variation of
the interaction strength A(e) in a stable system should
cause only a small variation of the physical properties
which is, in general, the case if the type of the corre-
sponding dynamical group is independent of A(e).

4. Generally the p limitation is not sufficient to cal-
culate the physical representation d*[4; cp,), especially
if ¢ depends on c(m, s), i.e., if one abstract algebra
describes different interaction types t®, « =1, -
depending on the irreducible physical representation
di@[2; ¢'*(m, 5)] chosen for D!® ~ DI o =2, - -,
There may be a set of curves A(e) € A, which can be
divided into classes, such that the same curve
c(A(e); m, s) € I belongs to all elements of the class.
Hence one has to identify each class with a different
interaction type ¢t'®, « = 1, -+ - or one has to select
the physical class of curves. In the example of Sec. 3,
fortunately each curve A(¢) belongs to the same type ¢
and furthermore c¢p,(A(€), m, 5) is independent of e.

C. Physical Interpretation
1. If an irreducible p-limitable representation is
known, the interaction type # must be identified. The

43 Also the number of invarjants varies in general with A except
for p-limitable representations (e 7 0).
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components of ¢ are generators of d*[4; cpy(4; m, 5)]
and unbounded operators in § with a common dense
domain D" of analytic vectors. Take a representation
8%(m) of GY% in a Hilbert space ¥ and assume that
‘ZD‘;;' N De» = D" is dense. The generators P;, 0, ,i =
1,---, N of GY(N) form a complete operator system
on D" in the sense that a reasonable class of operators
A with domain D 4 and D" N D, dense can be written
as functions of P;, Q;,i = 1,- - -, N.* The generators
dt of d*[4, cp;) should belong to this class, ie., we
demand that d! can be expressed as function of P;, Q,
(spinless model). Different representations yield a
different P;, Q; dependence of di. The physical
interpretation now becomes trivial. The Hamiltonians
can be identified as usual and all quantum-mechanical
systems in ¢ are completely described. Their properties
can be calculated from d‘[A, cp,] and the approach
contains also transition probabilities if there are
Hamiltonians in ¢ with bound states and further
Hamiltonians which cause transitions between these
states. The identification leads to a well-defined ¢ and
A dependence of D*[1].

2. Three steps are necessary to identify an abstract
group L as a dynamical group and to describe all
systems ¢ given by L ~ D

1. Construct a p limitation between irreducible
representations Uy, (L) and U(Gg)™®! such
that mass and spin conservation are related to
Casimir invariants in L. A representation theory
for L must be known. (The realization of the
p limitation depends on L.)

2. Prove that a representation Uy, (L) can be
determined by the above p limitation and by
mass and spin of the corresponding free particle.

3. Calculate the interaction type.

3. A MODEL FOR p-LIMITABLE DYNAMICAL
GROUPS DESCRIBING INTERACTING
SYSTEMS

Following our method we construct in Sec. 3A a
simple p-limitable algebra D! and derive in 3C a
representation theory for the corresponding group
which needs some mathematical properties of D!
which are given in 3B. The physical discussion is con-
tained in 3D. We realize a p limitation and derive the
physical representation and the interaction type.
Possible generalizations are discussed in 3E.

A. Embedding Theory for Gg(N)
1. To construct an algebra L which is p limitable
into Gg(N), we consider probably the simplest case

4 This connection is used in representation theory on function
spaces, e.g., on L% —o0, 4 o0) with generators being functions of
ix, dldx.
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that L contains Gg(N) as subalgebra L > Ggz(N) for
which a rigorous formulation of a p limitation
L — Gg(N) exists. Decompose L and Gg(N) into a
semidirect sum of a solvable ideal R and a semi-simple
Levi-factor L,:

L=R&F L,
respectively (see 1A.1-4);

G(N) = GE(N) G so(N)
=[(CoH,@Py) F Ql G so(N).
Then a first classification of algebras L> Gz(N) is
obtained*’ by algebraic calculations using the Malcev—

Harish Chandra theorem*® (2 denotes proper inclusion
and N intersection).

Lemma 1: Let L with Levi decomposition L =
R (+ L, be an embedding of Gz(N) = GZ(N) (F
so(N). Then the following are the only possible
embedding types:

(A) so(N) = Lyand

1. CcR with PyNR={0}; QyNR=
H, N R = {0}":

2. C@PyCcR; Qy NR ={0}; H N R = {0};

3.COH,®Py = R; Qy NR=1{0};

4. (COPy) C+ Qu = G%(N) = R; H, arbitrary;
(B) Gg(N) N R = {0}.

For further results one needs some kind of mini-
mality condition. We call R minimal if it contains
generators from GL(N) only. To list all embeddings
with minimal R we note that the completion of R in
Al and A2 with further generator from GZ(N) yields
case A3 or A4 and we are left with 3 types for mini-
mal R:

{0};

R' = (G @ Py) (+ Qy = GR(N);
R = (G ® Hy ® Py) (& Qy = GH(N);
RR=Co H, @ Py.
The corresponding semisimple Levi factor denoted by
Li, i = 1,2, 3, is restricted by two conditions:

(A) A semidirect sum between R’ and L exists.
(B) The following inclusions holds:

Ly Hy @ so(N);
L3> so(N);
L3> Qy + so(N).

45 H. D. Doebner and J. Henning, University of Marburg Report
of work prior to publication (1967).

46 N, Jacobson, Lie Algebras (Interscience Publishers, Inc., New
York, 1962).

47 This implies not Py, Qy, Hy <= L, because the projection part
of Py or Qy in R has {0 be nontrivial.

H. D. DOEBNER AND O. MELSHEIMER

2. For a discussion of (A) we recall some definitions.48
Let L; be Lie algebras over vector spaces R;, i = 1, 2,
with generators X and Y, respectively. The automor-
phism group of L, is denoted by Aut L,. It is a sub-
group of the group of all nonsingular endomorphlsms
of L,. The Lie algebra 9(L,) of Aut L, consists of all
derlvatlons of L;. The group m-Aut L, of inner
automorphism with Lie algebra ad(L,) is an invariant
subgroup of Autl; and the outer automorphism
group out-Autl; is given by out-Autl, ~ AutlL,/
in-Aut L,. If L is simply connected, then Aut L and
Aut L have the same Lie algebra.*®

To define a semidirect sum L, (+ L, between L, and
L,, take a homomorphism ¢ which maps L, in d(L,),

Ye LZ ? Yc € a(Ll)s

and use for the Lie brackets on the vector space
R, + R, the expression

(X + 1),(X" + Y]

= ([X, X'] + Y(X') = Y (X) + [V, Y'D.
Then {X + Y}spansL=1L; (3-L,.If L, can be mapped
homomorphic into 9(L,), it is given by Ly/N < a(L,)
with N being ideal in L, and kernel of o. Therefore
[N, L] =0 holds in L, (+ L,. A semisimple algebra
L, can be written as direct sum of simple algebras
L, = > L{¥ and any ideal N in L, is a direct sum of
some of the L{®.

3. Applying this to our model L¢ = R’ (+ Li, we have
Li/N? < 9(R") with N? being ideal in L} and [N, R¥] =
0. Because L{ is semisimple, the solution is given by

< d(RH) @ N,
The discussion in Sec. 2A-D4 and condition (B)
suggests a “maximality”’ condition for L,. If L' and
L” with L'> L" are candidates for L,, we choose L”.
The calculation of 9(RY) is straightforward. The

first case is solved by Lemma 2; the proof is given in
Appendix C.

Lemma 2: Let G}(N) be the Lie algebra of the
central extension of the inhomogeneous pure Galilei
group. Denote by in-Aut G%(N) and out-Aut G}(N)
the inner and outer automorphlsm group of G%L(N),
respectively:

(i) in-Aut G%(N) is Abelian;
(ii) out-Aut G 9.(N) ~ (Sp(2N, R) ® 4,) (X S)*.
Sp(2N, R) is the real (noncompact) symplectic group

48 §. Helgason, Differential Geometry and Symmetric Spaces
(Academic Press Inc., New York, 1962).

49 C. Chevalley, Theory of Lie groups (Princeton University Press,
Princeton, N.J. 1946).

50 The nondiscrete outer automorphism group is a result of the
nilpotency of G3(N), Ref. 47,
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in 2N-dimensions. 4, is Abelian and isomorphic to
the multiplicative group of real positive numbers. S
is a discrete group with two elements.

F(G%(N)) is independent of the discrete subgroup
in-Aut GY,. Because L} is semisimple, a subalgebra of
L} cannot be mapped into the Abelian parts in-Aut Gf;
and 4, of 9(G%(N)) and the maximal L} is given
(uniquely) by

. Lg = sp(2N, R).
Condition (B) is obviously fulfilled for SO(N)c
Sp(2N, R). Hence the solution for case A4 with
minimal R and maximal L, is

L = (GH(N)(F sp(2N, R) ®N.

The direct factor N! implies physical results inde-
pendent of those derived from G%(N) (F sp(2N, R).
It can be used to describe spin properties of interacting
systems. In the following, N* is dropped and we choose
case A4 with minimal R as candidate for a dynamical
algebra D*:
GR(N)F sp(2N,R) = D’

The semidirect sum is uniquely defined.® For R? and
R?, analogous calculations can be done.* The struc-
ture of L with R being nonminimal is unknown and the
situation is similar to that for an embedding of the
Poincaré algebra.#®5

4. To derive a similar result for an embedding of
the Galilei group G z(N), we note that G%(N)is simply
connected. Hence the Lie algebra of Aut G%(N) is
isomorphic to 3(Gy(N)) (see 3A-D) and the con-
struction of an embedding L of Gx(N) is equivalent
to constructing an embedding of the corresponding
Lie algebras if discrete subgroups are neglected. A
case analogous to A3 leads to the unique semidirect
product:

L' = GH(N) (x Sp(2N, R).

B. The Enveloping Algebra of the Central Extension
G%(N) of the Inhomogeneous Pure Galilei Algebra

1. For a representation theory of D* some properties
of the enveloping algebra of G4(N) are needed.
Intuitively, the universal enveloping algebra e(L) of
a Lie algebra L is defined as a set of all polynomials
built from generators of L if one identifies elements
which are equal by commutation relations in L. The
exact definition is the following®®:

Let 4 be an associative algebra; define for a,
a,e 4 a Lie product as [a,, a,] = a0, — a,a, and
obtain the infinite-dimensional Lie algebra 4, of the

52 Unique up to inner automorphism of sp(2N, R).
5% L. O'Raifeartaigh, Phys. Rev. 139, B1052 (1965).
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associative algebra A. Consider algebras e(L) for
which a homomorphism p exists mapping L into
«(L). We denote the homomorphism as lower index
in (L). Take now any further associative algebra 4
and let o be the homomorphism of L into 4, . Then
€,(L) is defined as universal enveloping algebra of L
if there exists a unique homomorphism r of (L)
into A, such that o = p - r. Drawing a diagram, this
means® (the index p is suppressed in the following):

(L)

i ”"—;**‘—‘—)'AL

2. For the discussion of «(GL(N)) it is assumed
that the center in G% is represented by im 1, thus
restricting the results to quasi-irreducible representa-
tions of GY,. Consider subalgebras of (G%(N)).
Denote by e and ™ the set of skew-symmetric
nth-order polynomials of all generators in GL(N)
(C.=1im- 1) and of Py and Qy, respectively. Obvi-
ously /" < ¢!» holds. We look for Lie algebras
contained in a finite sum of €™ and '™, respectively.
A trivial case is €V = G%(N), and €® and €* are
further examples which are classified by:

Lemma 3: Let € and ¥ be the set of all skew-
symmetric second-order polynomials of P;, Q; and
P, 0,,Ci=1, -+, N, respectively:

(i) € ~ sp(2N, R);

(i) € ~ GYL(N) & sp(2N, R).

The result is partly known (see, e.g., Ref. 54). We
give a short proof using Lemma 2. It is straight-
forward to check that ¥ is a Lie algebra. Because
there are (2N*? 4+ N) linearly independent second-
order polynomials of P;, Q;, i=1,++, N, its di-
mension is (2N? + N). Commutators between @
and €V yield linear combinations of P;, Q,. Hence
€2 = ¢ (} @ and there exists a homomorphism o
mapping % into 9(GY(N)). Take Ye ¥ > Y e
0(GY(N)). Y, can be decomposed in parts, Y2, Yo,
lying in the Lie algebra of the inner and outer auto-
morphism group, respectively. To derive ¥ ~
sp(2N, R) it suffices to discuss o. A first property of
o is the absence of a projection part Y'* in ad G3(N).
We calculate with X’ e G),(N):

Y, X'j= Y,(X) = Y2(X') + YJUX")

%2 Let T'be the infinite tensor algebra of L and X the ideal generated
b¥ 'cg})[h, =1 hy+ Ll L, I,€ L. Then T/K is a realization
of &(L).

5% H. Lipkin, Lie Groups for Pedestrians (North-Holland Publ.
Co., Amsterdam, 1965).
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(see 3A-B) and suppose that Y™® ¢ 0. Then we choose
X’ such that Y(X') = C, which is possible and in
contradiction to the result, that commutators between
!V and « will never lead to a linear combination
containing C. @ possesses no _one-dimensional
invariant subalgebra /,, since /, = 3, «(P? + 02) +
2 BiPiQ; + 3, vi(PQ; + Q;P,) implies together
with [ly, P;] = [}y, Q;,] = O that /, = 0 This proves
that the kernel of ¢ also is zero and we have from
Lemma 2 that ¢/® is mapped isomorphically into
sp(2N, R).

Special cases of this lemma are frequently used
(e.g. Refs. 9, 54, 55), also examples with N = 1,2 and
the sometimes-misleading accidental isomorphism
sp(2, R) ~ s0(2, 1), sp(4, R) ~ s0(3,2). In general,
only subgroups of sp(2N, R) can be expressed as
skew-symmetric second-order polynomials of P;, Q;
or of formal creation and annihilation operators
a, = (NDP; +iQ), a,= (NP, - i0). By
Lemma 2 the semidirect couphng between GEL(N)
and subalgebras of sp(2N, R) is unique. Some ex-
amples are given in Appendix D. Note that /® is
isomorphic to our choice of dynamical algebra D",

3. We apply the homomorphism ¢ mapping
sp(2N, R) into €. It can be extended to a homomor-
phism of D* into €?’. Take a unitary quasi-irreducible
representation U(G")’»’“ ™1 denote by U(GY) =
g% the image of G, under U i.., the representation
of the Lie algcbra derived via Stone’s theorem.
Because g9, is integrable, the image of ¢(G};) under U
is a representation U(e(G %)) of (G). Hence one has
a homomorphism ¢’ of D* into U(e(G

Df <> U(e(GR))-
In the defining diagram of e we identify L with D’
and A4, which was any algebra, with U(e(G})). Then
the following diagram holds:
(DY)

'
Df———> U(e(GE))
From the definition of ¢, we conclude that a unique
homomorphlsm r of e(D%) into U(e(GY)) exists and
that o' = pr. To derive properties of r from ¢’ con-
sxder X € e(GY) < €(DY). Because ¢’ = pr, we have

= U(X) and X, is skew-symmetric for X € D*, The
result is collected in the following lemma:

Lemma 4: Let ¢(D?) and (GY) be the universal
enveloping algebra of D' = G% (F sp(2N, R) and

55 R. Santilli, Nuovo Cimento S1A, 74 (1967).
88 The upper index [m, n(n)] is dropped.
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G§, , respectively. Let U(e(G%))i™ ™1 be the image of
€(GY,) under a unitary quasi-irreducible representation
of GY,. Then there exists a homomorphism

(D) —> Ule( Gy
with !
() X, = U(X) for X € «(GY%),
(6) X, skew-symmetric for X € D%

C. Representation Theory for D! = G(N) (X Sp(2N, R)

1. We are now prepared for a representation theory
for D' A generalization of Mackey’s theory of in-
duced representations for nonregular semidirect
products with nilpotent ideal seems to be too
involved for our purposes. Therefore we present a
simpler method, which is based on properties of the
enveloping algebra of GY,. The idea is that the
representations g%, of GY, are known by Theorem 1
and that by Lemma 3 sp(2N, R) can be mapped into
U(e(GY,)). Therefore a representation of D'<
U(e(GY;)) can be constructed. If this representation is
integrable to a unitary strongly continuous repre-
sentation of the universal covering group D* of DY,
and if a reasonable class of representations of D* can
be obtained in this way, the problem would be
solved. D! is an example of a group in which certain
irreducible representations of an ideal already deter-
mines the representation of the whole group, and it
is promising for D* as dynamical group that the
representations of this ideal are determined by the
mass of the free particle. The Casimir invariants of
D' support this idea.

2. To realize the method, we use a theorem of
Nelson® to construct representations of D* and D,

Extension Theorem (Nelson)

(1) Let L be a simply connected Lie group with
algebra L. Let L, be ideal in L and L, be the
simply connected subgroup of L with Lie alge-
bra L; and with a strongly continuous unitary
representation U(L,) in J. Denote by (L),
«(L;) the universal enveloping algebras of L, L;,
respectively, and by U(e(L,)) the image of (L)
under U.

(2) Let o be a homomorphism

() —> U((L)
with

() X, = U(X) for all X € e(L,),
(8) X, skew symmetric for all Xe L,

57 B. Nelson, Ann. Math. 70, 3 (1959).
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Then there exists in J a unique strongly con-
tinuous unitary representation U(L) of L such
that (X) = U(X) for all X € L,. U(L) is called
Nelson extension of U(L,).%

If o exists, the theorem states that it is possible to
extend the representation of the ideal L, to a repre-
sentation U(L). The restriction of U(L) to U(L,)
leads back to the representation which started the
construction. For the application we identify D* with
L, G} with L,. By Lemma 4 the homomorphism ¢
with properties (x) and (f) exist and we have:

Theorem 2: Let G%(N) be the central extension of
the inhomogeneous pure N-dimensional Galilei group
and D* be the semidirect product between G%(N) and
Sp(2N, R). Let U(G%(N)) be a strongly continuous
unitary representation of G%(N). Then U(G%(N))
can be uniquely extended to a strongly continuous
unitary representation U(D") of D*. The restriction of
U(DY) to G%(N) is given by U(G%(N)).

3. For representations J(D,)™1 * constructed from
irreducible representations U(G%(N))!™ the result
can be sharpened.

U(D*t™ is irreducible. There is by definition no
subspace invariant under U(GY) and hence also no
subspace invariant under J(D%)t™,

O(DHt™ is univalent. Let @ = {a,,"-*,a,} be a
parametrization of Sp(2N, R). Denote by U(Sp(2N, R)
the restriction of T(D%™ to Sp(2N, R) and consider
V(a) € U(Sp(2N, R)). For Sp(2N, R) < out-Aut G%(N)
an automorphism in G%(N) is given by ¥(a), i.e.,

V(a)P;V*(a) = 2 (bisP; + ci;Q)),
2

V(@)Q:;V*(a) = 3, (biP; + ¢;;Q)).

Now, U(D%)I™ would be univalent if there is for
each automorphism (i.e., fixed &};?, ¢j;*) only one
operator of the form V(a). Let V;, V, be two such
operators leading to the same automorphism. Then
sp(2N, R) < € implies that V'V, commutes with
U(G%)'™, which is irreducible. Therefore V71V, = e®1
and even « = 0. Then the univalence is a consequence
of the isomorphism between the set

{V(a) = exp (2 a,,A,,) A€ e‘”}
and the connected group Sp(2N, R).

58 Nelson extensions are denoted by (") in the following sections.

59 The existence of irreducible representation of D* which are not
Nelson extensions of U(G$)[™] will be discussed in a subsequent
paper because this question is directly related to the construction of
a model containing spin, Ref. 60.

80 H. D. Doebner and O. Melsheimer, University of Marburg
report prior to publication (1967).
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The restriction of J(DY)™1 to Gy is irreducible and,
using Theorem 1, is given by U(G)t™*=°). Any repre-
sentation U(Gg)l™ =% can be enlarged uniquely to
an irreducible representation of D*.

Let U(D*)™ be any unitary representation such that
U(GY)™ is the restriction to G§. Then we conclude
from the preceding results that U(DY)™! is also a
Nelson extension of U(G %)™ and therefore irreducible
and univalent. Suppose that two representations
U (DYHt™, i =1, 2, exist, being not unitarily equiva-
lent, i.e., with different restrictions U;(Sp(2N, R)),
i =1, 2, and with equivalent U;(G%), i = 1, 2, which
are connected by a unitary operator W

W U (GL)™ - W* = Uy(GL)™.

Take g,,'e U,(GY)™ and V,(a) € U;(Sp(2N, R)), i =
1, 2. Then, as above,

V@) gy Vi(@) = W - Vi(a)go, ~ Vi(a) - W™
holds and the irreducibility of U,(G %)™ implies

Vi(a) = e“*WV,(a)W* forall V(a), i=1,2,

in contradiction to our assumption. The statement
that U(D")™)is uniquely given by the Nelson extension
is useful for later applications.

4. Representations U(D)tmnm)] constructed from
quasi-irreducible U(G %) ™1 will not be discussed
here, because there exists no (irreducible) representa-
tion U(DY) with restriction U(GYL)™ ™1 m > 0,
n(m) < oo, such that the restriction to Gy is given by
U(Gg)t™%a) with d(s) = n(m) (see 1B.2).%® Therefore
Dt is unsuitable as dynamical groups for systems
including spin.

D. Dt~ GL(N)(x Sp(2N, R) as p-Limitable
Dynamical Group

The results of the preceding section are sufficient
to derive the interaction type ¢ as well as the physical
representation of D’. A detailed explanation is given
in 3D.1 for one-dimensional systems. The N-dimen-
sional case is solved in 3D.2.

1. One-dimensional Systems
1. The dynamical group for N = 1 is
D! ~ GY(1) (x Sp(2, R) ~ G%(1) x 50(2, 1).

It contains the free-particle group Gz(1) by construc-
tion uniquely. To realize a limitation

D! — Gg(1)

we consider p contractions (see 2A~D). The number of
generators in D* and Gg(1) is different. Hence a p
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contraction is at best a limitation of D*into G @ A,
with A, being a two-dimensional Abelian algebra. The
physical interpretation of Gz (1) is independent of the
direct factor A,.58 A suitable basis in D{P, Q, C;
A;,=1i=1,2,3}is givenin Appendix D. We introduce
a A dependence in D by a nonsingular transformation
of sp(2, R) depending on 4 = {4,, 4,, 43} and acting
as A, = 4, A;. Then D' ~ D*[A1] ~ D[2?] for A! # A2
holds. The A space is three-dimensional. Take a
curve A'(e) = {e™, €™, €™} € A with m; = O,m, =
—2,my = —1, ie., ;= A2 A =1, and perform a
p contraction along this curve by letting ¢ — 0. The
result is
DX ()] —> Ga(1) ® Ay

which proves that the algebras are related via a p
contraction which is not of Wigner-Inonii type. The
curve A'(e) is not unique.

2. We now analyze p contractions between repre-
sentations U(D'[A]),, = 4[4, c}:

d'[4, c]— U(GE(D)™ M = gg(m).

A spin-index s is superfluous for N = 1. The repre-
sentation of the Abelian algebra is omitted. The T’
space is two-dimensional. Consider U(D*[4]);,,. Be-
cause Gg(1) is not changed by the contraction, we
identify C € U(G (1)) = U(D*) as mass operator of the
interacting system with eigenvalue +im. By mass
conservation, m is constant during the contraction
and hence m =m’. A candidate for the physical
representation is the Nelson extension T(DHAD™ 3 of
U(GS,(1))™9; obviously C =im’-1 holds and a
p contraction into gg(m’) along the curve 1'(¢) also
exists. There are no further irreducible representations
with this property. Take U(D%);, with C = +iml
not being Nelson extension (if possible). Because the
restriction U(Gy) of U(D?),, to Gy is irreducible only
for U(DY)I™, the contraction gives at least two equiv-
alent representations g,(m), in contradiction to the
postulate that the limitation leads to one representa-
tion only. Hence these U(D"),,, are not limitable. The
physical representation is independent of A(e).

3. The interaction type ¢ is easily calculated. Take
the physical representation with m = m’; remember
that sp(2, R) ~ €. The solution is®?

A, = (i[2m’)P?;
Ay = (i2m')Q%;
4y = (i[2m)(PQ + OP).
Since all generators in D! are interaction terms, the

61 The Abelian factor can be avoided if a limitation between
representations is used.
82 The result is unique up to unitary equivalence.
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general Hamiltonian reads
H'[A] = (4,/2m")P? + (25)2m")Q*
+ (4/2m)(PQ + QP)
or

t = {P%, Q% PQ + QP},

and the group leads to spectra and eigenfunctions for
one-dimensional systems with harmonic force and
damping.®® The abstract-defined A turns out to have
the meaning of a physical interaction strength and the
p contraction implies switching off the harmonic force
and the damping; only the free Hamiltonian H® =
H[2%, 2° = {1, 0, 0}, remains. Because each H'[]]
generates a one-dimensional subgroup in D, the
limitation
H'[A] — H®

is performed by “running over a set of one-dimen-
sional subgroups” uniquely coupled to G%(1). This
is the group-theoretical translation of the limitation
between H'[A] and H° in quantum mechanics (see
2A.1).

4. A subalgebra D, © D' spanned by {P, 0, C,
A, + A,} is the so-called oscillator algebra® and
corresponds to ¢’ ={P*+ Q% < t. D, is also p
limitable into Gg(1). Its physical representation can
be determined by, e.g., embedding D, in D, (see
2A.4). The subalgebra sp(2, R) was used as spectrum-
generating algebra for the energy levels of the oscil-
lator,>!2 which can be arranged in two irreducible
Sp(2, R) representations. The embedding of sp(2, R)
in Dt yields a description of all levels in one repre-
sentation (see 2B.1). The restriction of U(DH)™ to
Sp(2, R) is reducible.!!

5. For N =1 the problem is solved. The approach
was based on the abstract group D! and on the in-
formation that the mass of the corresponding free
particle is m’. Using our “‘principles” for synamical
groups, we have the result as follows:

(1) Denote by —— a p limitation or physically a
switching off of the interaction. Then for
algebras (the Abelian factor is omitted)

D~ GY(1) G Sp(2, R)—> G(1)
is valid, but for representations
U(DYirr > U(GE(I))[M'O]
is possible if U(D?),, is the Nelson extension of
U(Gy)™.

83 In principle, the generator Q can also be added in ¢ describing
a constant force. However, switching off the interaction term
1Q is involved because Gx(1), has also to be transformed. The same
situation already appears in Gz(1), which describes not only the free

particle, but also those moving under a constant force.
64 R, F. Streater, Commun. Math. Phys. 4, 217 (1967).
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(2) p-contraction and mass conservation determine
the physical representation U(D%)™. D! de-
scribes one-dimensional quantum-mechanical
systems with interaction type f={P? (%
PQ + QP}. D'is a unique p-limitable dynamical
group.

2. N-Dimensional Systems

1: The discussion of D* for arbitrary N is in principle
analogous to the procedure for N =1. Gg(N) is
uniquely contained in

D' ~ G3(N) (% Sp(2N, R),

but a limitation between D¢ and Gz(N) is formally
complicated. Already in the two-dimensional case a
p contraction connecting D and Gz(N) @ Ay, with A,
being a nine-dimensional Abelian algebra, fails, which
can be proved by Lemma 1 of Ref. 37. However, the
restriction of an algebra to a fixed subalgebra is
mathematically well defined and we use this restriction
as a nonparameter-dependent description of a limita-
tion between D! and Gg(N) ¢ DY, which is obviously
a p limitation (p limation by restriction). A formula-
tion of this process via a parameter dependence
similar to a p contraction is at least possible in repre-
sentations U(DY), e.g., if a limitation exists in U(D?)
such that all matrix elements of generators d, ¢ G4 (N)
vanish.®

2. To derive the physical representation d*[cp,; m, 5]
of D' we restrict ourselves to spinless (s" = 0) free
particles with mass m’. This implies®

d'[cpy; m'y s" = 0] — U(Gy(N))L™:0s=0]

Because Gg(N) is not changed by the limitation, we
identify the center in D? as mass operator and we have
m = m’ by mass conservation. By the same arguments
(see 2B.1) we identify those Casimir operators for
D!, which are also Casimir operators for Gpg(N)
(except C) with operators describing the spin-content
and their eigenvalues are known by spin conservation,
i.e., s = s and d(s) = 1. From the results in 3D.3 we
find that the irreducible representation J(D"™! con-
structed as Nelson extension of U(G%(N))"™! has the
desired properties, i.e., C = im’ - 1 and d(s") = 1. The
restriction to Gg(N) leads to U(Gg(N))I™"0-5=0) and
the representation is p limitable. Any other irreducible
representation (if it exists) with C = im’ - 1 is not p
limitable by restriction (see the discussion for N = 1).
Therefore the physical representation d‘[cp,; m’,
" = 0]% is given by the Nelson extension T(D*)™! of
U(G%(N))m-0.5=01 The p limitation is unique,

8% The A dependence in dY{cenl is dropped'. Au explicit determina-

tion of cps is not necessary; it can be derived using the results in
Ref. 11.
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3. Deriving the interaction type ¢ from m = m’ and
sp(2N, R) ~ ¥, we find the (2N? 4+ N) generators of
sp(2N, R) as linear combinations of the (2N? 4 N)
linearly independent, skew-symmetric, second-order
polynomials in P;, Q,, i=1,---, N, and the inter-
action type contains at most

t={V,i=1,+,2N* + N}
={PP;; 00 PQ;+ QyPy;i,j=1,--+ N}

The Hamiltonians H*[A} are linear combinations of
some V;, H'[A] = 3, 4,¥V;. The group describes N-
dimensional isotropic and anisotropic oscillators with
all possible types of linear damping or N-dimensional
systems with second-order polynomials in P;, Q; as
Hamiltonians. The limitation H*[4] — H°is performed
by running over one-dimensional subgroups uniquely
coupled to G%,(N).

4. We check now whether the degeneracy groups
E'[A] for HY[A] in t are contained in D!, As E'[4] is
compact, we determine the maximal compact subgroup
of D* which is given by that of Sp(2N, R). The result
is partly known'?; a short proof is given in Appendix D.

Lemma 5: The maximal compact subgroup of
Sp(2N, R) is U(N). The 2N-dimensional real repre-
sentation of U(N) in Sp(SN, R) is unique up to inner
automorphism in Sp(2N, R).

The degeneracy groups SO(N) and SU(N) for the
free particle and for the isotropic oscillator, respec-
tively, are subgroups of U(N) as well as the degeneracy
group for all further systems in 7. Hence our postulate
E'[A] © D' is antomatically fulfilled. The generators
of SU(N) are written formally as interaction terms in 7.

One system, the isotropic oscillator, is uniquely
characterized by its degeneracy group. The equation
[d, SUN)} =0, de D! possesses only the solution
d = Hy, + al or, by changing the energy scale,
d=H,,. Furthermore D,, defined by D, ~
GL(N) (@ (su(N) @ H,,) is a subalgebra of D* and
D, < D’ is the N-dimensional oscillator algebra.
D is uniquely determined by the degeneracy group
SU(N) (see Lemma 5). We emphasize that systems
without degeneracy are also described by DY The
degeneracy is accidental in this approach, as it is in
quantum mechanics.

5. Collecting the results, we have shown that Dt
is a unique p-limitable dynamical group for spinless
quantum-mechanical systems with Hamiltonians being
second-order polynomials in P;, Q;, i=1,--+,N.
The p limitation is constructed by restriction and
determines, together with mass and spin conservation
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and the mass of the corresponding free particle m’, the
physical representation which is given by the Nelson
extension of U(G%(N))™,

E. Construction of Further Models

1. With D'~ G%(N)(x Sp(2N, R) a reasonably
pure group-theoretical description exists for some
spinless systems. The model can be generalized to
particles with spin by decomposing the angular
momentum into an orbital part and a spin part, which
corresponds to a dynamical group being the direct
product of SO(N) and D* defined above. Spin repre-
sentations of this enlarged dynamical group can be
constructed and the determination of the physical
representation is similar to that for the spinless case.
A detailed treatment of particles with spin will be
given elsewhere.® The extension to n-particle systems
with forces of the type ¢ discussed is possible. External
forces can also be included. To show this, decompose
the physical representation of the free n-particle
system Uy (Gp(N) ® - - - @ U, (Gx(N)) in irreducible
representations of Gz(N),*>%4, which is equivalent to
splitting the motion into the center-of-mass motion and
in the relative motion, and apply the above approach
to both parts.

2. Further quantum-mechanical examples with
limitable dynamical groups are not known.®*® A
systematic construction of models would need some
information on physically motivated limitation pro-
cesses between group representations. Perhaps further
systems with limitable dynamical groups do not exist
in quantum mechanics if only finite-dimensional Lie
algebras are included.

3. We remark that an approach using infinite-
dimensional algebras is equivalent to the construction
of a field theory and all difficulties of field theory and
particle physics will appear and there are no obvious
physical principles as, e.g., causality or field equa-
tions to restrict the algebraic arbitrariness and to
determine the physical representation.
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APPENDIX A

A classification of equivalence classes £ for local
exponents ¢(g, g") of G(N) can be derived from G
(the N-dependence is suppressed). Let gle), » =
0, --,d, be a standard basis in Glel. G c Glel s
spanned by gi¢el, » = 1, -, d; Cl¥] is generator of
Fy and center of GI¢). The constants of structure
Ci,l¢] are known from G for 1 < v, p, 4 < d. Fur-
thermore, C}, [¢] = 0 holds. For a calculation of the
remaining type C9 [¢] we apply the method used for
N = 3.9 The result is

Cilgl =0,y for g'=P,,
g¥l=0, and 3, [¢] = 0 otherwise,

with y being any real number. In integrable-irreducible
representations of Gi1 the center Clo! is given by
im - 1, m real, and Ct®l is also an invariant operator.

JIrreducible representations of Gi¢} are at least classified

by m. There is a basis in G{£1 such that Cl¢1 enters only
in the form y - CI®1. Hence different y will lead to
different irreducible representations and the equiva-
lence classes are parametrized by y, £ =£(y),
—o <y < +oo; Gl = GUl Take y, # ¥, and
consider GI?3i = 1, 2. Because C}i} = +imy,1 holds,
we conclude that irreducible representations of Gz
exist which are equivalent to those of Gl and vice
versa. Therefore, in discussions of representations, the
index y can be dropped. It suffices to consider repre-
sentations of Gi} = Gy, and m classifies not only the
irreducible representations but also the equivalence
classes.
APPENDIX B

Some results in Secs. 1B and 3C are based on
Mackeys theory of induced representations.?* The
application of this theory is known for N = 3. We
refer to the physically clear explanation in Refs. 22
and 23.Therefore it suffices to give a short treatment
for the general case, to derive the classification of
irreducible unitary representations, and to show how
the classification determines the structure of the
representation.®® We emphasize that the following
is a short survey.

The construction of induced representations of

87 M. Hammermesh, Group Theory (Addison-Wesley Publ. Co.,
Reading, Massachusetts, 1962).

88 The author’s are indebted to A. Hartkdmper and H. Neumann
for discussions of the Mackey theory and for several useful sugges-
tions. We refer in this connection also to the detailed treatment in
Ref. 24.



LIMITABLE DYNAMICAL GROUPS IN QUANTUM MECHANICS

Gg(N) = G, (X G, being a regular semidirect product
of G, and G, with G, Abelian, proceeds in 5 steps:

(1) Determination of the character group G, and
the classification of the equivalence classes of
G, under G,;

(2) Choice of a representative element y, in each
equivalence class C which determines the little
group G¢ belonging to Gz(N);

(3) Construction of all irreducible unitary repre-
sentations of the little group G¢;

(4) Decomposition of Gx(N) by cosets Ggz(N)/
G1Q< G¢;

(5) Construction of induced representations for
Gg(N) via a representation of Gy(X G.

The realization of these five steps for Gx(N) is now
indicated.

1. G, is an (N + 2)-dimensional translation group

with characters (clements of G,)

Az, p(0, T, W) = exp i(mb + Er — pu);

(m # 0).

G, is split into equivalence classes corresponding to
Gy. Let x, ., and . o . be characters of G,.

Then they are called equivalent in Gy if an element
g2 € G, exists with

X, 5,9/ (8) = Amp (281857 forall g eG;.

Take two elements of one class g, 5 (g1). With
g1 =1(06,1,u,0, r)and g, = (0, R, 0, v, 0) the relation-
ship
m6 4+ E'r—pu=mb+ (dmv?+E—p.v)r

— (R7'p — mR W

m,p,u real

holds for all 0, =, u, or
m=m'; E' =E+ {m®—p-v;
P = R7p — mv),
and two characters are equivalent if m = m’ and if
they both lie on the paraboloid
Ve=FE—p*2m=E —p?2m.

This is also sufficient.

Proposition 1: The equivalence classes C of G, in
G ; are classified by two real numbers m and V. There
is only one character for each p in C given by

Zm,(:p”/2m)+V.v .

2. Let C be any equivalence class characterized by
m, V, ie., C(m, V). Consider the group G™V < G,
of all transformations leaving invariant one character
% € C(m, V). It can be shown that different characters
within the same equivalence class C(m, V) lead to
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isomorphic groups. G™¥ is therefore independent of
z and is usually called a “little group” for Gz. To
construct G™ we choose a special element y, in
C(m, V):

X0 = Xmpo

(i.e., p = 0); then G™7 is given by

G = {82! 22 € Ga3 Xy .0(828187 )
= Ymyog) forall g eGy,

GV = {g| &= (0, R,0,v,0),
V =V + imv’; 0 = R™Y(mv — 0)} ~ SO(N).

Proposition 2: The little group G™¥ for each
equivalence class C(m, V') is isomorphic to the orthog-
onal group SO(N).

3. The little group SO(N)is a simple group of rank
r = [N/j2]. The irreducible representations can be
characterized uniquely by a set s = {s;,---,5} of r
highest weights, ie., exactly one representation
belongs to a set 5. The corresponding representation
space is denoted by JC!s! with basis |z) and the matrix
representation is written LIl(g,) for g, G™% the

mapping
[m,¥,5]

81" 80 > Xny.o(&)" L,[f;}'(go) = M *(g, " &)

defines a matrix representation MImVel(g, - g} of
Gy (X G*V'in KL

According to Mackey, all inequivalent irreducible
unitary representations of a regular semidirect product
Gz = G(X G, can be classified by combining the
classification of the equivalence classes C of G, and the
classification of the irreducible unitary representations
of the little group. U,(Gg) and U,(Gy) are equivalent
if and only if the corresponding equivalence classes
are equal and the corresponding irreducible unitary
representations of the little group are equivalent. For
all classes C and all irreducible unitary representations
of the little group there exists a unitary representation
U(Gy).

4. A discussion of the remaining two steps is added
to indicate the structure of the resulting representation
U(Gg).

To decompose Gz by cosets G,/G, @ GV modulo
Gy (X GV, consider the cosets

Gy @ G g = Gl@ G- g1 g
= G, @ G:n'V' 8:€Gg/Gy Q< G?'V,
which are determined by

G g,
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It can be shown that there is a one-to-one correspond-
ence between G™" g, and characters in C(m, V):

GV 82 Ymyo(82 81" &)
With Proposition 1, Gg/G;(X G™Y can be mapped on
to points p of an N-dimensional Euclidean space.
Take in C(m, V') the character corresponding to p,
ie.,

Xm,(p’/zmnV,p(gﬂ-

Then g, = (0, R,0,v,0) is element of the coset
characterized by p, i.e.,

Amy.o(€2 81" 82) = Xmpo(€ &1 &)
= Xm,(p%/2m)+7,p(81)
holds if
—mRlyv = p.

The transformation of the coset characterized by p
under g € Gy leads to a coset characterized by p’ =
R~1(p — mv). Hence the measure on the coset which
is mapped into the measure d = dp, - - - dpy of the
Euclidean space is invariant under Gg.

5. For the construction of an irreducible representa-
tion U(Gy) let J&L™*1 be the space of vector functions
f(g) over Gy with values in JCI*1. Denote by (- | *) an
inner product and by (- |-) its restriction to Jet!
and assume

(@) f(g1- 88 =M""Ug g)f(g)
forall g -geG, (X G (| g < .

¢| “)s1 IS constant on the cosets G5/Gy Q< G™YV which
can be mapped isomorphically onto the N-dimensional
p space. Hence it is a function of p only. If we assume
furthermore

® f F@ | (@ dp < o,

then Je[™Y+*} becomes a Hilbert space, and a repre-
sentation U(GYy,) is given by the set of operators U(G,),
g € G acting as U(gy) f(g) = f(g - gv-

It is convenient to consider only functions f(g) over
cosets Gg/G (X GV as elements of JE[™ 1. This is
possible because JC[™7-*] can be mapped isometrically
onto JeL™¥:s) spanned by f(g,), g, € Gg/Gy (X G;*¥
with f(g,) = f(p) and with inner product

f F®) | W@y &0 = (f| .

To perform this mapping one has to choose in each
coset characterized by p one representative element
g,» and different choices of g, will lead to different
basis systems in JCL™V+*1 because U(G7-) is unitary.

For the explicit construction of the representation
in JL™¥>1, let £, (p) be components of /(p) and introduce

H. D. DOEBNER AND O. MELSHEIMER

an (improper) basis spanned by |p, x) such that
=3 [¢s@ e,

Let r € G and calculate the matrix elements of U(r);
(r =rry):
P UM = UM P =, 1) =1f(&" 1)
=18 T 88 " 8o &or)

with p, = R~(p — mv) denoting the coset containing
g, ' I- Because

&8 €6y &g € Gy &rg €G (X G,
we can apply («) and have, with the result of step 3,

| , uns) = 2 Ay o(&or185 DL (g, 2850 f.(p,)
or

®s| UOIS) = S exp- i(mH + (21’_"1 + V), _ p.“)

x LI (g,ra850 R (p — mv), u' | f).

The matrix L] still depends on the choice of the
representative p, or on the basis in the Hilbert space
JeLm¥<l, as pointed out above. One can prove that
the representation is unitary and irreducible and that
all unitary representations U(Gg) are obtained by

"this method. The number of components of the vector

functions is directly related to the representation of
the little group G™7.

APPENDIX C: PROOF OF LEMMA 2

(a) Aut G%(N) is subgroup of GL(d, R), d = 2N +
1 defined by a set of algebraic conditions which are
consequences of the invariance of the Lie brackets in
G%(N). To derive them, choose in G}(N) a basis

{Xo,1=P;; Xoy=0Qssi=1,"" N; X2N+1=C}

and consider a matrix 4 = (a;;) € GL(d, R) and
X, X' e GY(n) with

da
X=X, and X = AX.
i=1

If
[Pfl! Q;] = C'aij; [‘P:’Pg’] = [Q:’ Q;] = 0,
[p;,Cl= [0;,C1=0, i,j=1,-+,N
holds, then 4 € Aut Ggz(N) and we find 2N2 — N
and 2N conditions, respectively, for A:

2N-1 A,y Gpvi1
S det
v=1 ;v v

= 0y, ;10sN112N+1> KoJ =1,-+-,2N, (Cl)
DN = 0, k=1,---,2N. (C1H
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(b) To extract int-Aut G%(N) we calculate its Lie
algebra ad G%(N); after a straightforward discussion,
one shows that A4, , €int-Aut G%(N) has the form

1 A

Ay = 0

Hence it is Abelian. From (1) we have for any 4, €
Aut G%(N)/int-Aut G%(N) ~ out-Aut G},(N) the form

A= a2N+l,2N+1)

B O
Aout = A € out-Aut G}(N)
0

with B being a 2N x 2N matrix. 1 is arbitrary.
(c) To decompose out-Aut G%(N) consider two
special outer automorphisms (4 > 0):

A, 0
4, = ( 2N
0 2

with 1,y being a 2N X 2N unit matrix and a kind of

inversion J acting as
JP; = Q;, JC=-C,

A, and J fulfil condition (Cl) and 4, J € out-Aut
GY(N). We define, furthermore, 4, € out-Aut G%(N)

R B 0
Ayt = 0 1

restricted by condition (C1) only and have

JQi=Pia i=1,' ',N.

Py

. {A).Aout’
out — -
JA Ay

A, and 4, commute. Therefore out-Aut G%(N) is
of the form

out-Aut G3(N) ~ ({Aout} ® {4, X S,

S being a discrete group with elements (J, 1). 4, is
Abelian and isomorphic to the multiplicative group of
the real positive numbers.

(d) To derive A, € Sp(2N, R) we show that 4,
possesses a skew-symmetric invariant form ¢(x, y)
with x, y being vectors in a 2N-dimensional real space.
Choose a basis {e_y,* ", e,y} in this space such
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that ¢(x, y) = (x, Spy) and

+1

+1
@(x,y) is invariant under BeGL(22N,R), ie.,
(Bx, Sy By) = (x, S,»). B € Sp(2N, R) holds iff
sign (j+ k)b, * b_j_p = Oy (C2)

Arrange now the basis in GL(N) as {P,, Q,, Ps,
Q4. , Py, 0y;Candidentify P, Q;,i =1, -, N
with the corresponding basis vectorsin{e_y,***,e,x},
ie, ey =Py, - ,e.y = 0. Then the conditions
(C2) for Sp(2N, R) and the set of conditions (C1) for
Ay, are of the same form and 4,,,, € Sp(2N, R) holds.

(e) Because any element of Sp(2N, R) also fulfils
condition (C1), {4} &~ Sp(2N, R); Sp(2N, R) occurs
in its lowest-dimensional representation, which is
unique up to equivalence. The dimension of Sp(2n, R)
is 2N2 + N. We remark that the conditions (C1) are
linearly independent because this is the case for the
equivalent formulation in (C2). This concludes the
proof.

APPENDIX D

In some cases the identification of a basis in € in
terms of skew-symmetric second-order polynomials in
P;,Q;,i=1,+-, Nis given explicitly and the semi-
direct sum €V (3 € is described by commutation
relations (C = iml).

(a) N = 1. € is three dimensional. The basis

Ly=--(P*+0Y, Ly=—--(PQ+QP),
4m 4m
%=¢W—®

span so(2, 1) ~ sp(2, R) with Lie algebra
[Luv’ Lul] = guuLwl’ Luv =—L
8u=8n= —8s=—1,
A further useful basis in €? is A4, = Ly, + Ly;
Ay = Lyy — Lyg; Ag =2Ly3, ie., A; = (i/2m)P?;
A, = (il2m)Q%. € (F €2 is spanned by six generators
P, Q, C, 4, and the semidirect sum is defined by
(2, 4] =0, [P, 4,] = —Q, [P, As]= —P,
[0, Al =+P, [Q,4,] =0, [Q, 45] = 0,
[C,4,]1=0, i=1,2,3.

Vi
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(b) N =2. €? is ten-dimensional. The following
bases span so(3, 2) ~ sp(4, R):

. 2
M54=L12=_l‘ Z(Pf-l—Qf),
4dm i=1
.2
My =Lz = — Z (P:Q; + Q:P);
4m i=1

.2
M"":L”':ZL > (P} — 0Y;

mi=1

i
My = L, = — (Q:Py — Q1 Py);
2m
My = Ly = — (P} + Q) — — (P} + 0);
4im 4m
i
My = Ly = — (PyP; + 0:10Q5);
2m
My =T, =— (P} — Q%) — — (P} — 0);
4m 4dm
i
My = Ty = — (PyQ) + Q:Py);
2m
My =T, = L (PP, — O4Q5);
2m
My=T= '—I'(Q1P1 + PQy)
4m

— L (P,0, + OP;
4m

[Muw Mu}.] = glevx - g;va). + gvau),
—gleuu(ﬂ’ X, ¥, )‘ = 1, 2’ 3) 49 5);
n=8r=8s=—l, gu=g&:;=1;
g,=0 for us#w.

The subalgebras so(2, 1) and su(2) are spanned by
{Ly2, Ly, Log} and by {L,, L,, L,}, respectively.

() N = 3. €? is 21-dimensional. A suitable basis
can be calculated following Ref. 11. For example, the
subalgebra su(3) is identified. We denote by M =
QxP),A,;,=PP,;,i,j=1,2,3. Astandard basis
of su(3) is

i
H, = — (A — Aw),
2m

i

Hy= — — Ay,
2 am
i
E,=F—F Mz £ A4y),
+1 2(6)¥m( 3 12)
i
E e _— M :FA ,
+2 2(6)im( 2 13)

i
E g=F — (M, & Ay).
+8 2(6)1}m 1 23)

H. D. DOEBNER AND O. MELSHEIMER

H; and E_, commute with
3
E=Y 4.
i=1
Complex linear combinations are not suitable for an
identification because the difference between compact
and noncompact groups is lost.

APPENDIX E: PROOF OF LEMMA 5§

(a) It suffices to prove Lemma 5 for Sp(2N, R) and
U(N) being considered as subgroups of GL(2N, R).
Let U(2N) = GL(2N, R), being the group of unitary
unimodular matrices. Then Sp(2N, R) N U2N) ~
U(N)*® and hence U(N) = Sp(2N, R). U(n)is compact.

(b) The stronger statement that U(N) is even maxi-
mal subgroup is a consequence of the criterion® that
a compact subgroup of Sp(2N, R) is maximal if there
exists an N-dimensional subspace Ry of R,y which
is invariant under U(N) < Sp(2N, R). We show that
U(N) fulfils this criterion. The 2N-dimensional funda-
mental representation of Sp(2N, R) is a real one and
unique up to equivalence; the representation U gy, (N)
of U(N)in Sp(2N, R) is real too. Uy, (N) is equal to
its complex conjugate representation Uy,(N) and,
in the reduction of Ugyy () into irreducible k-
dimensional parts Uy(N), there appears with each
U,(N) also U,(N). The dimensions of the irreducible
representations of U(N) are 1, N, d(N) with d(N) >
2N for N> 2. Hence for N> 2 only 1- or N-
dimensional representations U;(N) and U,(N),”®
respectively, can appear. At least one U,(N) is N-
dimensional ; otherwise the representation of Usy,(N)
is not faithful. Therefore Sp(2N, R) contains U(N) in

the form
Un(N 0
Upem(N) ~ ( M) —)
0  UNxN)
For N = 2 this is also true, as is easily checked. The
case N = 1 is trivial. The invariance of an N-dimen-
sional subspace Ry is obvious from (E1).

(c) The form (E1) for Uy, (W) is unique to equiv-
alence, ie., up to transformations AUy, (N)4A™?
with 4 € L(2N, R). By a theorem of Malcev!—
proved for complex algebras but valid also for their
real forms—two equivalent subgroups of L(2N, R)
are already equivalent in Sp(2N, R). Therefore
A € Sp(2N, R) holds and Ugyy(N) is unique up to
inner automorphism of Sp(2N, R), for Sp(2N, R) is
simple. This concludes the proof.

(ED)

¢ E. B. Dynkin, Am. Math. Soc. Transl. No. 33 (1950).

70 The general N-dimensional representation Uy(N) of U(N) maps
U e U(N) onto (det U)hU or onto (det )4, A;,A; =041,
42, - - up to equivalence and U — (det U)41 U is an automorphism
of U(N) since (det U)A U is again unitary.

71 A. J. Malcev, Am. Math. Soc. Transl. Ser. 1, Vol. 9 (1957).
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A generalization of the idea of Killing fields to spaces which are not symmetric is given. The field so
defined specifies coordinate lines along which the variation of the metric tensor is the slowest possible in a
global sense. Thus it generalizes the Killing fields in spaces with a symmetry where the metric tensor does
not change along Killing trajectories. Several examples are given, and the method is then applied to spaces
containing gravitational radiation of the type considered by Issacson.

For spaces containing radiation, it is shown that a real functional 4[], associated with every vector
field E, measures some parameters associated with the radiation. In the simplest case this parameter is
the “energy density” of the radiation, but, if a sufficient number of vector fields can be invariantly defined
in the background, the average gravitational “stress”” associated with the wave may also be measured.
We conclude with some conjectures about further application of these ideas to the theory of gravitational

radiation.

I. INTRODUCTION AND OUTLINE

Riemannian spaces which possess a symmetry are
those in which a coordinate system may be found with
the metric tensor independent of one of the coordi-
nates. They are equivalently characterized by the fact
that they admit a solution § to Killing’s equation’-?

Cegap = 26qm = 0.

The preferred coordinate system mentioned above is
obtained by picking coordinates such that &4 =
(8)* = 8#,. The metric is then clearly independent®
of x°.

Practically every calculation is simplified when the
space admits a Killing field; and, correspondingly,
when there is no Killing field, the sheer calculational
difficulties multiply. For instance, calculation of the
effects of small deviations from exact symmetry in
cosmological solutions must often be treated in an
approximate manner. Heretofore, even a quantitative
measure of the lack of symmetry in a Riemannian
manifold has been lacking.

* Supported in part by NASA Grant NSG-436 and by the
Aerospace Research Lab., Office of Aerospace Research, U.S.
Air Force. This work is based on a doctoral dissertation by the
author submitted to the University of Maryland.

T Presently NSF Faculty Associate at the University of Texas,
Austin, Texas.

1 Capital Latin indices run and sum over the range of components
in a general (positive-definite) space. Lower case Greek (0-3) and
Latin (1-3) are reserved for four-dimensional Minkowskian spaces
V, (signature + * - -). Round brackets mean symmetric part, square
brackets, antisymmetric. The double vertical bar (]|) means covariant
derivative in a general Riemannian space, the semicolon (;) means
covariant derivative in V,, the single vertical bar (|) means covariant
derivative in a 3-dimensional positive-definite subset of V. Ordinary
derivative is indicated by a comma.

2 K. Yano and S. Bochner, Curvature and Betti Numbers (Princeton
University Press, Princeton, 1953).

3 A. Trautman, “Foundations and Current Problems in General
Relativity” in Lectures on General Relativity, Brandeis Summer
Institute in Theoretical Physics (Prentice-Hall, Inc., Englewood
Cliffs, N.J. 1964).

The purpose of this paper is to suggest one plausible
generalization of the notion of a Killing field—a
definition which simultaneously gives a quantitative
measure of the degree of symmetry in the space—
and to point out some properties of this definition.
The hope is that this work will lead to simple co-
variant ways of characterizing spaces which are
“almost symmetric.” This would help to remove the
clutter of coordinate effects which attend the usual
approximation methods. Such applications are, how-
ever, left for later investigation.

The discussion is initially in terms of positive-
definite manifolds, but we indicate the generalization
to spaces of Minkowski signature. The treatment is
general in the sense that we do not have to assume the
deviation from symmetry is small, although we may
do so at times to make interpretation easier.

Our definition for spaces which are not symmetric
and hence have no nontrivial solution to the equation
S =0 is the following. We characterize the
amount of symmetry in a (positive-definite) Rieman-
nian space A by considering the minimum possible
value of the expression

JE(A”B)E(AHB) v

f g, dv

Here § is an arbitrary vector field, and the quantity 4
is the ratio of integrals of scalar fields over the space.
Since the metric is positive-definite, A is zero iff § is
Killing. We have imposed the normalization condition
in (1), dividing by the integral of the squared length of
the vector, to exclude zero fields which are always
solutions of Killing’s equation. We shall take as our

0< 4[] = ;v =gd'x (1)
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criterion for the “almost Killing” field that it minimize
A compared to all other choices of the vector field.
Objects like the right side of (1) may have more than
one stationary point, so we emphasize that the most
interesting value of 4 and the correspondingly most
interesting vector field associated with it are ¢4, the
smallest stationary value, and &, the “ground-state”
vector field.

By standard arguments, assuming the compactness
of G, or restricting the class of vector fields to allow
neglect of surface terms at infinity, the variational
problem defined in Eq. (1) is the same as the problem
of finding the eigenvalues ,,4 in the equation

§(A||B)"B + mlfA — 0, (2)

and (A corresponds to the smallest (for positive-
definite spaces) of these ,,A.

The ground-state vector field (§ may be character-
ized in the following way. In a coordinate system in
which (& = &), then g4 = (& + (8, and

4dgae _dgac _ ofuo
Zoo 0o = = 1-
dx ds (og . og)

Here ds is an element of proper length along &. It is
apparent that (1) is an integral “average square” of
this quantity (3), but the “average” of the ratio is given
by the ratio of the averages of the numerator and de-
nominator. Even though we have a small eigenvalue 44,
it is difficult to use ¢4 to put bounds on the quantity
(3), since (& may vanish at some points for global
topological reasons (for instance, nonsingular vector
fields on a sphere must vanish somewhere).* The
integral average (1) thus forces us to accept behavior
which is locally rapid (e.g., schematically, g p a
smooth curve with a few kinks) as being smooth in a
global sense. On the other hand, the vector field
defined by Eq. (1) obviously chooses the coordinate
lines for x° which give the slowest dependence of
gap on x®in a global sense.

For the moment assuming the existence of solutions,
we can get an upper bound for the quantity 41. By
definition, ¢4 is the minimum value of the integral
(1), so any test function gives a bound. By considering

3)

4 We expect, however, that the ground-state vector field will
have few zeros. It is known that the nodes of this vector field cannot
be separating hypersurfaces (that is, they cannot separate the
domain into disjoint parts). See R. Courant and D. Hilbert, Methods
of Theoretical Physics (Interscience Publ., Inc., New York, 1953),
Vol. 1 p. 452. If we assumed that A and gsp were analytic instead
of merely Cw, then there could be no zeros which are (n — 1)-
dimensional subsets of hypersurfaces. In any case, this theorem
simplifies the construction of coordinate systems which utilize the
ground-state vector field as one congruence of coordinate lines.
Such a coordinate system will fail only on the at most (n — 1)-
dimensional regions where the vector field vanishes, and so ‘““patch-
ing” over the nodes with geodesic coordinates should be simple.

RICHARD A. MATZNER

a geodesic patch of radius L at some point in AG, and
by taking a test field

pa= 0P — 2L7KT x4x )}, for 3 xdxd < 2
w4 = 0, otherwise

it is easy to estimate that 0 < A[Y] < 2L2%(n + 1) x
(n + 2), where n is the dimension of the space. [Thus,
on the surface of a cube of edge length / for instance, the
maximum possible L is 2/ and ,A(cube) < 2 - 2/-2 -
3 -4 = 48/-2.] The size of a geodesic coordinate patch
is roughly given by L% ~ R.... (the Riemann tensor),
so we have a rough bound for (4 in terms of the curva-
ture.

It is important to note that estimates of this type
bold for the eigenvalue (A in any space. The idea of
“almost symmetric” enters when it turns out that
oA &« L%, where L is a typical length of the problem.
We present some examples of this type of behavior in
Secs. III and IV below, but a simple example is the
unit 2-sphere, where ¢4 = 0, while the only available
length is the radius (= 1).

In the following section (Sec. II) we state our mathe-
matical assumptions and give the (completely stan-
dard) derivation of Eq. (2). We quote a theorem
guaranteeing differentiable solutions for closed (posi-
tive-definite) Riemannian manifolds. We point out a
close analogy between the problem considered here
and the problem of elasticity in non-Euclidean space,
and we give a “physical” meaning to the eigenvalue ¢4
(essentially w? where w, is the lowest natural frequency)
for 2-dimensional surfaces which can be imagined
embedded in flat 3-space.

We then prove a theorem which generalizes a
theorem of Yano,? that there are no Killing vectors on
compact positive-definite spaces of negative-definite
curvature. We give here a criterion ¢4 of the departure
from possible symmetry and give a /lower bound for
o

We then consider one peculiarity of spaces of
Minkowskian signature. In some cases the quantity
ESPE .5 =0, even though &, # 0. A particular
example is the Kerr solution, where § is Killing in the
flat background. We discuss the behavior of the square
of the derivative for the class of metrics g,z =
by + k,kg, with kyk? =0, and b, a background
metric which has a symmetry. We see that all the
Killing vectors for b,; have null Killing tensors in
8ap -

ﬂWe show also that a slightly modified integral
definition of 44 is still available in some cases where
€ and £#) become null together.

Section III gives some examples to show the depend-
ence of the parameter ;4 on the departure from an



ALMOST SYMMETRIC SPACES AND GRAVITATIONAL RADIATION

exactly symmetrical situation. The first of these is a
perturbed flat 2-dimensional torus, which has the
advantage that the ground state of one class of solu-
tions to Eq. (2) can be found explicitly. It shows
behavior which we find to be characteristic of short
gravitational radiation in general. We also give a
calculation of (A in a flat space with a linearized
gravitational wave pulse. This shows how the deviation
from a symmetric situation with a null Killing vector
behaves. In this case the minimizing vector becomes
timelike, and the eigenvalue (A ~ h%(Ak | 2(koAk | )?,
where & is the amplitude, k, the center momentum,
and Ak, the transverse spread in momentum of the
weak pulse.

Section IV is perhaps the most important part of
this work. In this section we apply the idea of sym-
metry to spaces containing short gravitational radia-
tion of the type considered by Issacson.> We find that
we are able to characterize such spaces (which may be
completely empty) by a number which is roughly the
energy density of the gravitational radiation. We may
in certain cases in fact specify at least as many
parameters for the gravitational radiation as there are
Killing vectors in the background metric (on which
the radiation is superimposed), thereby giving a
measure of the “stress” associated with the gravita-
tional wave.

Finally, Sec. V mentions some of the applications
and problems which should be investigated by this
method, and points out some- of the possibilities
inherent in it.

II. MATHEMATICS

A. Existence and Differentiability for Closed
Positive-Definite Metric Spaces

For the rest of this paper, except where noted
otherwise, we assume that we are working with a
positive-definite Riemannian C*® manifold A, and
we assume that G is compact or that boundary
conditions are chosen so that integration by parts is
possible with neglect of surface terms. We denote the
Hilbert space of all square-integrable vector fields
€ on A by L(AM). The norm is

(Jors=

The demand that A[§] be stationary yields, as usual,
a second-order equation:

5[1[&45‘4 va — 6[f§(A]IB)§(A))B) dV:],

5 R. A. Isaacson, Phys. Rev. 166, 1263, 1272 (1968).
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2 f EASE AV = 2 f FAIBSE 1 dV

= 2f{[E(AI|B)a§A]llB

_ §(A||B)"Ba§A}dV

The compactness of A (or the boundary condition at
infinity) makes the first term on the right vanish. Then,
since 0§ is an arbitrary variation, we find

E(A[[B)HB + }sEA = 0. (2)

We take the definitions (1) and (2) to be the de-
fining equations for the preferred vector fields in
. Equation (2) is the generalization (because of the
A term) of the second-order equation equivalent to
Killing’s equation given by Yano and Bochner (Ref.
2, p. 57). It is clear that a solution to (2) with A =0
is Killing and vice versa. In Minkowskian-signature
metrics, the stationarity of (1) still implies (2), but
the equivalence of (2), for 1 = 0, to Killing’s equation
no longer holds.

The derivation of Eq. (2) shows that the operator

D D
— ﬁ gF(BaA)C l_)_x_F —_ _S)AC (4)
is positive. (The notation is D&C/DxB = &C ) It is
positive-definite if there are no Killing vectors or if
we exclude them. Also, because of the compactness
of A, or the boundary conditions at infinity, D is
self-adjoint on L(AG).

It is clear that there are at least as many solutions to
(2) as there are Killing vectors. We are of course
interested in the case where there are solutions which
are not Killing vectors. Consider only the subspace

L'(M) = L(M) which is orthogonal to the finite

number of Killing vectors in AG. The operator —D is
then positive-definite and in fact is strongly elliptic.®
We may then apply the theorem quoted by Kodaira
and Spencer (Ref. 6, Theorem I) for compact A to
find that —® has a complete countable set of differenti-
able eigenfunctions e, with real eigenvalues whose
only accumulation point is +co. [The completeness
means, if ¢ differentiable, Y € L'(AM), then

[+ #]
"'l" = 2 ay€;
h=0

where a, = [ dV -e,, and the series converges in
L'(A0).]

Thus we have all the expected “nice” properties of
the operator —D on the compact manifold AG. In
particular, we know that a differentiable ground-state
solution &, exists. On compact manifolds, then, there

8 K. Kodaira and D. C. Spencer, Ann. Math. 71, 43 (1960).
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will be uniform bounds for the quantities § - ,§ and
of 45 o&41B) and for all the other derivatives of (&.
The quadratic form in (1) may be written

(4(B) — (ABMN
5 I f(AHB) =C §AIIB‘SJMI|N,

where
CABMN — %(gAMgBN + gANgBM).

)

The most general positive-definite form with these

symmetries which depends only on the metric is
CABJPIN + ,ugABgMN, U > _n—l.

where 7 is the dimension of the space. Although the u
addition is nonnegative for g > 0, even in spaces of
Minkowski signature, the equation analogous to (2)
for nonzero y,

36408 4 EB 143 + w) + (R + A64)E¢ =0,

(6)
is not qualitatively different from (2). Dealing only
with the u term gives conditions only on the divergence
of € and allows too many solutions. If we have any
CABMN contribution, then the equation is qualita-
tively like (2), and the only criterion for the choice of
u seems to be aesthetics, which suggests u = 0, as we
take here.

We note the following point, however. If, in a
Minkowski-signature space, § is taken to be the unit
timelike normal to a set of spacelike 3-surfaces, then the
integrand in the numerator of (1) is always nonnegative
and is in fact the quantity K*K?,, whereK?; is the
second fundamental form of the spacelike 3-surfaces.
If we set the tensor’” C*#** = 0, but set u 7 0, the
quantity in the integrand is K%, where K is the trace of
K?;. When K =0, the corresponding surface is
minimal. This has relevance to a suggestion of Komar®
to use normals to minimal hypersurfaces as the subs-
titute for the timelike Killing field in stationary
situations. It is not obvious that a set of such minimal
surfaces exists in general situations. However, the
minimum principle yields them if they exist, and
otherwise gives the most minimal surfaces (globally)
available.

B. An Analogue to Elasticity Theory

The tensor C4BMN_ defined in (5), is formally
similar to the elasticity-strain coefficients given by
Green and Zerna? for isotropic elasticity in a uniform

medium (with Poisson ratio identically zero because

7This was suggested by D. Lyndon-Bell, Monthly Notices
Roy. Astron. Soc. 135, 413 (1967).

8 A. Komar, Phys. Rev. 127, 1411 (1962); 129, 1873 (1963).

® A. E. Green and W. Zerna, Theoretical Elasticity (Oxford
University Press, London, 1954), p. 162.
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we set u = 0). The similarity of the equations to an
elasticity theory is no accident. In elasticity, the strain
components #;, measure the Lie derivative of the
metric along the displacement field u. This can be
seen physically in a coordinate system such that there
is no relative coordinate velocity between particles.
(This means that the field »* must have constant
components in these coordinates.) Then the metric
gives the distance between particles, and the strain
tensor is g;; ', which is £ g, in this coordinate
system.

The minimization problem set here is in fact com-
pletely analogous to the eigenvalue problem for
vibrations of closed elastic shells under the boundary
conditions of sliding rigid contact (the type of bound-
ary condition at the interface between a turning
shaft and immobile bearing). In the limit as a shell of
material becomes very thin, the bending modes
become negligible, and the low frequency eigen-
solutions (with sliding-contact boundary conditions)
become solutions §, where the vector & lies entirely in
the surface being considered.®~!! An example of the
situation we visualize is a closed 2-surface whose
symmetry we wish to measure. We form a frictionless
elastic shell over the surface (with 2-dimensional
Poisson ratio = 0 since 4 = 0), with the shell initially
unstrained so that it resists both compression and
expansion. Then the asymmetry of the object is
measured by the square of the fundamental-oscillation
frequency if we perturb the shell. If it has a neutral
mode, the surface has a Killing vector.

C. A Theorem of Yano

After the qualitative discussion of the preceding
section, we give a precise result. In positive-definite
metric spaces the eigenvalue ¢4 is clearly nonnegative.
But it is possible to obtain a better lower bound in
some cases by noting the following.

We have

E(A“B)E(A”B) 1%

N —f EAB pE av +f(§(AHB)£A)uB dv.

The second term on the right vanishes by the com-
pactness of the space or by the boundary conditions
at infinity. Further, the coefficient of £, in the inte-
grand of the first term on the right is

348 + 3854

10 A. E. Green and J. E. Adkins, Large Elastic Deformations
(Oxford University Press, London, 1960).

11§, C. Mikhlin, The Problems of the Minimum of a Quadratic
Functional (Holden-Day, San Francisco, 1965).
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Thus, if the space is compact or if we impose stronger
than usual conditions on the vanishing of &flp at
infinity (note this is an unsymmetrized derivative),

E(AHB)E(A”B) av
=1 f gAIBE, AV +} f £4, 468 5 dV

- 4[Recte ar. @)
Consequently, in positive-definite metric spaces,
Jasto + artoce av 20

This holds for any vector § and the associated A[§].
In particular,

oﬂfozooﬁ v > — ;fRAcs%A dv.

This is an improved bound in those cases where
R4 is a negative-definite quadratic form on the mani-
fold:

E4R 4% 0 < —2hpieeit?ba
for some positive number Ag;.; and for all vectors §
and all points of the manifold. (With this sign con-
vention a hyperboloid has constant negative-definite
RC)
Thus we have a lower bound for 44:
02' ->- }'Ricci g

This derivation is a generalization of that of Yano
(Ref. 2, p. 39) to prove that there are no Killing vectors
on compact manifolds if R,C is a negative-definite
quadratic form. The advantage of the present formu-
lation is that it gives a criterion oA of the deviation
from symmetry.!?

D. Null Killing Tensors

In spaces of Minkowski signature, the quantity
g =P g 5 may become negative or may be zero even
when £,.; is not zero. This complicates the applica-
tion of the methods described here to simple exact
solutions to Einstein’s equations, such as those solu-
tions due to Schwarzschild, Kerr,’® and Vaidya.!*1%

12 The boundary conditions demanded for noncompact spaces
for this derivation are rather strict, so this does nor constitute a
proof of the nonexistence of Killing vectors on negative-definite
open surfaces. In particular, a spacelike 3-hyperboloid has six
Killing vectors, each of which would give surface-integral term in
Eq. ().

13 R. P. Kerr and A. Schild, in Convengo Sulla Relativita Generale;
Problemi Dell’ Energia e Onde Gravitazionali, Proceedings of Confer-
ence in Honour of the Fourth Centanary of the Birth of Galileo
(Comitato Nationale per le Manifestazioni Celebrative, Rome, 1964),

14 P. C. Vaidya, Proc. Indian Acad. Sci. A33, 264 (1951); Curr.
Science 21, 96 (1952). .

15 R. W. Lindquist, C. W, Misner, and R. A. Schwartz, Phys. Rev.
137, B1364 (1965).
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In each of these solutions, there are vectors which are
not null but whose symmetrized derivative is a null
tensor. They are the Killing vectors in the flat space
b, which is a base metric for each of these solutions,
in the sense of Eq. (8) below.

In fact, each of these solutions is a member of a
general class of metrics which can be written

ds® = (b, + k,ky) dx* dx* = g,, dx* dxF, (8)

where b,; is some background and %, is null in the
background: b**kk, = 0, and hence is also null in
the full metric. Suppose & is Killing in the background.
Then there is a coordinate frame such that ¥ has
constant (contravariant) components and b4 ,{* = 0.
Then in this coordinate system,

2Uap) = Lekakg = (Kakp) o8
and, since
gay = b% — kY
and
ke pkal? = (b, ko)L
= (ke k*)C

= 3(k%,) .2,
the square of 2{,.p is

b6k kg), 0P (K k), oL = O.

It is easy to see that {(,,4) has vanishing trace also,
so the possibility suggested in Sec. II, that adding a
positive u term would lead to nonnegative results, is
seen to be inapplicable here. Metrics like (8) but with
b,s = flat have been studied by Kerr and Schild.*®

In the case where £, becomes a null tensor for
some null vector &, if § has the same orientation (i.e.,
future or past directed) everywhere, we may define a
limiting process. Let y* be a (so far arbitrary) future-
directed timelike vector field. Then define

W=t e, € >0;

Dol = EupE P + 2ep 0 &SP + Yiwp? P
The first term is zero by hypothesis, as is &,£% Thus

fma;,sm‘“‘”’ dav fmméf“"” dy
lim =

€0 J")?a'r]a dV

f y. &% dV

Since a future-directed timelike vector is never
orthogonal to a null vector, the denominator is
always positive.

Itis not, in general, clear whether the limit is unique.
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However, if y* tends to zero sufficiently fast at infinity,

f?(«;p)f(a;m av J‘)’af(a;ﬁ);a av
= — . ©

f V€, dV

f Ve, dV

If &% is a solution to DE + 1§ = 0, for some eigen-
value A, then even if § is null, we can define the
characteristic integrals by 4 = lhs of (9) for an arbitrary
timelike vector y* which goes to zero sufficiently fast
at infinity. In this case, the limit in the integral
definition is independent of the timelike vector used in
the limiting process, and the integral definition agrees
with the eigenvalue given by the differential equation.

On the other hand, if the limit is 4, independent of
the timelike vector y (so long as vy vanishes sufficiently
fast at infinity), then § is clearly a solution of the
differential equation, by (9). So, for even-oriented
null vectors, we can define a modified integral which
is equivalent to the differential equation.

. EXAMPLES
A. Exact Calculation on Torus for A, (§

The metric for a flat torus is ds* = dx? + dy?, where
the points (x +1,y), (x,y), and (x,y + 1) are
identified. Differentiable functions on the torus must
be doubly periodic with unit period.

We consider a curved torus with metric

ds? = &Y dx® + dy*.

Here points are again identified as above by their co-
ordinates, and ¢(y) is periodic in y with unit period.

This space still has a Killing vector giving transiation
in the x direction. We consider vectors which are
orthogonal to the x Killing ground state, and to
simplify the algebra we consider in fact only vectors
pointwise-orthogonal. Then it is clear the ground-
state vector itself does not depend on x and we write

() = (&%, &) = (0, e “uly))..
The eigenvalue equation DE + 2§ = 0 becomes
— _‘.i_zﬂ A~ 1 .‘ﬁ) jl =0
e (g =0
with f= &%,
We desire a ‘““‘wavelike” perturbation which makes

(10) explicitly manageable. We thus pick fso that (10)
is a Mathieu equation. This requires that f itself be a

(10)

4,
Mathieu function; since f° is g, , we must take fto be
the only nowhere-zero periodic solution to Mathieu’s

RICHARD A. MATZNER

equation, namely,'®

f = celky; 5¢/2) = 1 — (5¢/4) cos 2ky + - - -.

Here k is mm, since the basic period is unity, and e,
which is assumed small for this expansion, is the
amplitude of the small waves in the metric component.

Now fis inserted into (10), which itself becomes a
Mathieu equation. By a general theorem on the Sturm~
Liouville equation!” we know that if there is a solution
with no zeros, it must be the ground state 44, which
we seek to find. We are again forced to take a solution
cey and obtain

u = cey(ky; €/40),

so that

' =ufF~ 1+ ¢ 18cos2ky 4 - -
and

2.2
02:§_k_+...
2

are the solutions found from the metric perturbation
ox~=1—€cos2ky 4+ ---.

From our arguments in Sec. I, we expect 42} to be
some sort of average derivative of the metric. We see
that this is the case, since g,, , =~ —2¢k cos 2ky, so
that ((gse )2 = 2k

The €2 factor in 44 is to be expected, because the
flat torus is a space which minimizes A, so any devia-
tion would be like €. The term k2 suggests that it is
the “energy content” of the waves which determines the
size of 4. This ties in with our estimates of A made
above in terms of the Riemann tensor. It is interesting
to calculate the scalar R, which completely character-
izes the curvature:

2 2
dy* dy

For small amplitude waves,
€
o~ — —cos 2k
4 y

and
R ~ —4(ek? cos 2ky + }°k? sin® 2ky).

The ground state thus gives a much smaller value of
o/ (by a factor ¢) than our previous crude estimates
yielded. On the other hand, if we average R, we have
(R} = €*k?, which is twice the eigenvalue 4A. In this
case, at least, the ground-state eigenfunction is

18 N. W. McLachlan, Theory and Application of Mathieu Functions
(Dover Publications, Inc., New York, 1964). We have taken his
notation.

17E. A. Coddington and N. Levenson, Theory of Ordinary
Differential Equations (McGraw-Hill Book Co., New York, 1955),
p. 212.
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sampling the average (over many wavelengths) of the
disturbance in the space. We shall see this is a general
phenomenon, and shall meet it again in the application
of these ideas to spaces containing gravitational
radiation, which we take up in Sec. IV.

B. Linearized Gravitational Waves

One example of a space with a null Killing vector is
flat space with a plane-weak (linearized) gravitational
wave on it. We give a schematic derivation here
which shows what happens to the Killing vector as we
go from an idealized plane pulse to a situation where
there is a spread of directions in a wave packet.

The metric in this situation can be gauged® so that

ds® = (1,5 + h,p) dx* dx*,

where

hoi =0, hyy = f oK) ¥*IH1¢ B
We suppose this wave packet is fairly well localized at

t = 0, and that it has center momentum k, = [k,| Z.
The coefficient of ¢ in the exponent can be expanded

about ky:
Ak Kok,
K| = [ko| + Ak . <o 4 AKX (|--°——)-Ak+---.
’ ?koi lkol [kol?

1

The coefficient of 2 in this expansion stops at the linear
term Ak, , because |k| is linear in Ak if Ak is parallel to
ky; the wave packet thus does not spread front-to-back.
Since Ak, = k,, Ak, = k,, and dAk, = dk, (because
= |ky| £), we find to the order written out in (11):

h(X, t) fdk dk e‘(kz“”‘kw)

gl Hr ol ik, k,,z — 1. (12)

Here 4 is a typical h,, and Ji(k,, ky, z) is the two-
dimensional Fourier transform of 2(x, 0). The integra-
tion can be carried further to show that the lateral
growth is via diffraction Green’s functions. However,
the form (12) is more physically transparent. We find

= f dk, dk,
% eikzm+iky’ue-i(k¢2+k12)t/Ikg[ i oE(k Jk,z—1)
0z “
= ik,h,
2
oh _ _Oh _ f(k +k)dkzdky
ot 0z (Kol
x eik,,m+ik,ﬂe—i(k_~,2+k,2)i/|kn|0 E(kz’ k,,z—1)
oh (Ak 2
= - Pyl ij) h (defining k, and Ak ).

** L. D. Landau and E. M. Lifschitz, Classical Theory of Fields
(Pergamon Press, Oxford, 1962), 2nd ed.
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Although k, (~ |ko|) and Ak, are functions of
position and time, we assume they are some representa-
tive constant values, and we take a test vector with
constant components & = g, & = b. We then have

Leh = ai[—k, + (Ak )¥/lkollh + ibk,h

and
Akl)z 2
Eh2=k2[b—a2+aa(£~—-—)
[£:h] 1| ( ) Kok,
Ak )T 2
— 2a(b — hi*
alb — ) S5 ] [
We consider only the ratio
“d}.” = iggh|2/§¢5a

without.integrating and thereby avoid the question of
divergent integrals. We take a =1, b =1 + e. The
minimum of the ratio “dA” is then given [for
(Ak | Yk ko) small] when

Ak )?
klkO

Thus the minimizing vector is timelike and tends to
a null vector as (Ak )?— 0. The value of the ratio
is, in this limit,

“dA” =~ 2 [(Ak | )2k, (A2,

The eigenvalue tends to zero if the wave vanishes or
if it becomes more nearly plane-fronted. The deviation
from symmetry goes quadratic in both the amplitude
of the wave and the quantity Ak | (Ak | /k,).

The quadratic dependence on the amplitude of the
wave is reasonable, since we are dealing with a mini-
mum principle and the flat space is symmetric. The
other factors can be understood by considering the
behavior of a pulse of radiation. If the pulse did not
spread and traveled at the speed of light, then there
would be a null Killing vector and 4 would be zero.
The eigenvalue 4 depends on Ak | as [Ak | (Ak | [ko)P,
since the spread is slower for pulses with larger
center momentum. Finally, the “center of mass” of
such a pulse does not travel at unit velocity but at a
somewhat slower group velocity. Hence our minimiz-
ing vector is timelike: The vector gives the velocity
that keeps an observer centered in a slowly diffusing
wave packet. This is obviously the trajectory that
keeps the space looking most time-independent to
such an observer.

€ ==

< 0.

IV. APPLICATIONS TO SHORT
GRAVITATIONAL WAVES

In the example of the flat torus, Sec. IIIA, we saw
that the ground-state solution was sampling the
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average curvature of the disturbance. This is inter-
esting because the averaged curvature gives a sort of
effective energy. If we agree to ignore small scale
effects, then a solution which is averaged over many
wavelengths of a rapidly varying ripple is the same as
a slowly varying space which contains matter of the
same density as the average energy density in the
ripples. A very rapidly varying situation can mimic a
slowly varying one if we have only coarse measuring
instruments.

These ideas can be made precise, and perhaps the
most thorough investigation of them has been by
Isaacson,® who has considered the high-frequency
limit for gravitational radiation. Because of the
nonlinear nature of the Einstein equations, gravita-
tional radiation produces a gravitational field with an
effective-source stress tensor which is more or less the
pseudotensor. (See, for instance, Ref. 18, p. 341.)
Isaacson, following Brill and Hartle,’® has given a
method, when the rapidly varying wave can be
separated out from the smoothly curving background,
for averaging to obtain an effective stress tensor which
is invariant over a wide class of gauge transformations,
a much more general class than the usual pseudotensor
treatment allows.

One problem he has considered is the following:
Let g, be a vacuum metric, which admits a coordinate
system (Isaacson’s steady coordinates) such that the
metric can be written

8ap = Vap + ehaﬂ:'

where the metric y,4 is a slowly varying function of
position; A, is a rapidly varying function of position
and h,, satisfies a certain generalized wave equation
“O”h,s = 0 in the space y,5. The statement that y
is a slowly changing background while 4 is rapidly
changing means that (h,,) = O(4/L), where % is the
(short) wavelength of the radiation and L is a typical
length in the background. A discussion of the gauge
invariance of the wave-background splitting is given
in the Appendix; Isaacson has discussed the invariance
of the average effective stress tensor [the r.h.s. of Eq.
(13), below] and of Eq. (14). We demand that the
averaged stress tensor (defined by Isaacson) for A,
should give the background y,; when inserted as a
source into the field equations for y,;. We symboli-
cally write

RG(y) = —XRB(h, p), (13)
ER;};(h’ y) = G“D”haﬁ = 09 (14)

where the number 0, 1, 2, - - - refer to the powers of

13D, R. Brill and J. B. Hartle, Phys. Rev. 135, B271 (1967).
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€ appearing in an expansion of the equation
Ry + eh).

The equations must be solved simultaneously in a
consistent manner, since (14) involves the background
metric y,5 Which is obtained from (13) which involves
h,s . Because of this consistency aspect, the derivatives
of 4 must be of order €1, i.e., a"h = O(e"). This can
easily be seen by the following argument due to
Isaacson. Derivatives of the background are 0y ~
L-1y; those of h are 0h ~ hi71; the “‘energy density”
in the wave is then p ~ ¢*G1€2172, and the curvature
of the background is ~L~2. Then we have, by the
Einstein equations,

G\ (ct\ [e\ i
R,, ~ L2 =M =)= Z.
o~ (c“)(c)(z) TSL

If there is matter present which is also curving up
the space, then the inequality holds; if the curvature is
due totally to the wave, we have approximate equality
€ ~ 1 (we take L = 1). This means that £ — 0 and
€ — 0 are the same limit for a fixed background, and
to emphasize this we write (%) instead of O(e).

We write £y, = 7,5 and assume E is only slowly
varying, so § = O(1) and 0§ = O(1). Then we find,
recalling € dh = O(1),

0(1) = 25{1;#) = ‘}.’aﬂ + Ehzﬂ,aéd + O(I)
And, since g*f = y*# 4+ O(4), we find

45(¢;ﬁ)§(¢;m = ?aﬂj’uv‘y”yuﬂ + 2€haﬁ,a§d7./uvy‘myvp
+ €hap oy, EE YY" + O().  (15)

To this order, the denominator in (1) is just
fJ—ye &Py, d*x, and upon integration the first term
in (15) yields a number depending only on € and
y*, which we denote by 42, [E]. Since we have assumed
€ = 0(1), 9§ = O(1), and 0y** = O(1), and since it
is the integral of a rapidly oscillating quantity 4, ,
times slowly varying factors, the integral of the second
term in (15), although a priori of order unity, is
actually much smaller. Thus this term is at most
O() and we need consider only the last term, which
(again noting the product of rapidly and slowly
varying terms) we write as

f Ay Py NEE =7 dix + O(2).

The average is over many wavelengths, but over a
region which is much smaller than the scale of the
slowly changing background. Let the colon denote
the covariant derivative in the background, then
noting that O(A7) = h,, , = h,4., + O(1), We write
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this term as
f52()’Mhap;a?ﬂvhuv;pﬁ”f”\/:;/ d‘x + 0(1)

= 32n f T@ g0 [y d'x + O(F).
Here

2
TS = ;—ﬁ Ol Y0 T

is the average stress tensor of gravitational waves as
defined by Isaacson. It is this average stress tensor
which determines the background y,; according to
Rop(y) = 8m(T5" — 37,sT™"). This term is clearly
also independent of 1 as £ — 0, and we find

A[E] = 4,[8] + Aq[E]

for high-frequency radiation, where

J‘gwg SRV T dix
f BT N

Both terms are independent of 4 in the short-wave-
length limit. If § is timelike, then® § - TV, E > 0.
We note, moreover, that the additional term 4,4
allows in some sense a distinction to be made between
fluid and gravitational-radiation-filled universes; the
eigenvalue 4 is lower for fluid universes with the same
large scale “shape.” Since 4, can be bounded by a
curvature (in the background y,,) and since T
is clearly also a curvature in the background metric,
we see that A[€] is indeed sampling only the large-
scale curvature of the space and “smoothing over”
the ripples, as might be expected from an integral
estimate.?* This derivation makes explicit the result
suggested by the torus calculation in Sec. IIIA.

To carry the discussion of the energy density in
gravitational radiation a bit further, let us consider
the Robertson-Walker (R-W) metrics, which have
the form

(16)

}‘md [E] =

ds® = —dr® + Q(r) do?, (17)

where do? is the line element of the homogeneous-
and isotropic-space sections; these sections are flat
or have unit (by choice of length scale) positive or nega-
tive curvature. Because of the high symmetry,

20 Reference 5, Eq. (4.1) et seq.

21 We must still justify the assumption that 9§ ~ 1 for the ground
state. We note that to change the integrals of the second and third
terms in Eq. (15) would require 9§ ~ 4~%, so that oscillations in §
will be “‘in phase” with those in the radlatlon field. In this case, the
second integral would be O(4!), while the third would still be O(1).
The first integral would then, however, be 4,[E] = O(1~?%). So we
conclude that the ground-state eigenvalue can certainly be made
smaller by taking a slowly varying vector field, and the ground-state
eigenvalue is given by Eq. (16).
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these sections each have six Killing vectors: trans-
lation along and rotation around each of the axes for
the flat sections; two sets of “rotations” for the
curved ones. (For a discussion of the metrics of this
type, see, e.g. Ref. 22.)

Because the 7-constant sections in these metrics
have Killing vectors, if we form the ratio (for &, a
vector in the 3-space, described by the 3-metric

S = &is» °gu °g* = 0))

J‘S(zla)s(l )\/ gd '
(3)/1 ,

J‘§£3ta\/—d3

@4 =0, since we can pick § Killing. In this case,
because of the symmetry we have (1 = 0, even though
there is a length scale introduced by Q(7).

For an example of a space which is on the large
scale identical to the R-W types, and in spirit of
recent observational discoveries, we suppose that the
universe at the present time is given by an R-W
form and that its behavior is dominated by the matter
in it, but that it contains 3°K blackbody gravitational
radiation distributed in a uniform and isotropic way
through the universe.?® In the “now” constant-time
slice, we compute ®A[E] for § Killing in the back-
ground, and, by arguments like those leading to Eq.
(16), we find

SWJ'T;?V)EiE:i\/g dax
m”’rad[&] — s

J‘ayijgiéj\/sy A3

where here y,; is the background R-W metric. Be-
cause of the assumed isotropy and homogeneity of
both the background and the radiation, T# must
be proportional to y;; where the proportionality factor
is p/3, since this is a massless radiation field. Since
p = p(7) is constant on space slices, we have @ 1[E] =
®2,0a[E] = (8[3)p. Here p is the energy density due
to the gravitational radiation, i.e., the density appro-
priate to 3°K blackbody radiation.

[In this simple situation, it is clear that a minimum
with respect to the background is a minimum in the
full metric, since A = ly + const. In fact, by an argu-
ment similar to that for first-order perturbation theory
in quantum mechanics, it is easy to see that to first

(3)}'[&]

order in 7", the minimum is given by the same vector
field in the full metric as in the background. One can

22 §. W. Hawking, Astrophys J. 140, 1 (1967).

23 The observations of 3°K electromagnenc radiation show that
it is in fact remarkably isotropic. See R. B. Partridge and D. T.
Wilkenson, Phys. Rev. Letters 18, 557 (1967).
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also calculate the first-order correction to the vector
fields exactly as is done in nonrelativistic quantum
theory:

Som) = By + 87 2 (Jlg(m) - T B, dV) S ,

k#m ml bl kl
where §; is the ith eigenvector of —D in the back-
ground, ,A is the corresponding eigenvalue, and
€1, is the ith eigenvector of the perturbed —D. In this
formula, the vectors §,, and &, are considered
referred to the background space y,,.]

Since 3°K blackbody radiation has an energy
density of ~1073 g/cc, we see that this yields a much
longer characteristic length than that provided by the
large-scale background. (The background scale is
necessarily shorter than that given by the amount of
matter observed in the galaxies ~1073° g/cc, and even
shorter—magic density ~107% g/cc—if we assume
that there is sufficient deceleration to close the universe
with the observed Hubble velocity.)

Actually, the energy density of the radiation con-
tributes to the curving of the background. In the
previous example, the radiation was as symmetric in
the large as in the background.?* However, if the
background is determined by some other factor, say
a distribution of dust or electromagnetic radiation,
then the gravitational radiation, if weak enough, will
not change the background significantly and such an
integral over the different Killing vectors in the back-
ground will give six different numbers (for R-W
background) characterizing the “stress” in the gravita-
tional radiation.

This result is perhaps the most interesting of this
work. We have here apparently an invariant method
for specifying some parameters of gravitational

radiation.
V. OUTLOOK

The method presented here in Eqgs. (1) and (2) is
a straightforward generalization of the idea of a
Killing field. The differential equation (2), in spaces of
Minkowski signature, can be considered a coordinate
condition for the time, say. Detailed investigation of
this idea may yield very useful results in the future.

We also have left for future investigation the question
of using the vector fields defined by these recipes to
give new candidates for conserved momentum or
energy objects. This may also prove quite a fruitful
field of investigation.

24 The gravitational radiation can supply the entire energy density
curving up the space. The solution with the R-W symmetries was

discussed by D. R. Brill, Nuovo Cimento Suppl. Vol. II, No. 1
(1964). The value of A[E] for E Killing in the background of this

space gives p, = —Q(T)/Q(f), the deceleration parameter for the
large-scale evolution.

RICHARD A. MATZNER

Perhaps the most significant and unexpected results
of the ideas in this work are their applications to
spaces which contain short-wave gravitational radia-
tion, and their uses in specifying some numerical
parameters for the radiation. As we have seen, the
ground-state eigenvalue measures, for different spaces
with the same large-scale shape, the contributions of
the gravitational-energy density in the space. This
gives an additional length scale AZ4[E] in addition
to the sizes obviously present in a situation with
large-scale size L and Riemann-tensor variations on a
length scale Z. With each invariantly defined vector in
the background, there is an associated length scale
which measures some component of the stress of the
gravitational energy.

The question remains: Can a complete specification
of the space be done in this way? Restricting con-
sideration to just the ground state &,, this does not
seem possible because the eigenvalue oA contains
parts due to the background as well as due to the
radiation and there seems to be no way to separate
them. However, it is plausible that the entire spectrum
of the operator—®D may give a sufficiently powerful
specification of the space it is expressed in, that the
complete solution, background plus radiation, can
be expressed in an expansion in terms of the eigen-
vectors and eigenvalues of —D. While this complete
specification may be overambitious, it is hoped that a
more clear-cut identification of the spaces which
satisfy Isaacson’s requirement (that they admit a
“steady” coordinate system) may be possible by
these methods. This is certainly an important applica-
tion, if it can in fact be done. A metric which appears
to contain gravitational radiation can always be
analyzed by computing the Riemann-tensor compon-
ents in a tetrad frame. If there is radiation present
which is curving up the space, we have seen that its
characteristic Riemann tensor will be typically

R....~ e 3% = O(eY) = O(4Y),

and so will be overwhelming in the short-wavelength
limit. The integral method given here, when applied
to a space of the Isaacson type, gives a finite result
for the integrals involved, as £ — 0, and in fact the
limit is of the order of the large-scale background
curvature. The Isaacson metrics can be singled out
from among the (perhaps) wider class of metrics
which have Riemann-tensor variations, in a tetrad
frame, of order 27 on a length scale 1.

One other interesting application for these ideas
may be to define, invariantly, a background metric
in any situation, by averaging the metric along the
eigenvector fields of —D.
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APPENDIX: GAUGE INVARIANCE OF
BACKGROUND-WAVE SPLITTING
We assume, as stated in Sec. IV, that there exists one
coordinate system (steady coordinates) such that we
can write

8w = Vv + eh‘”, (Al)

y = 0(),

where y,, is a slowly varying function of position,
and there is some large length L (which we set equal to
1) such that

Ldy = 0(1),

while £,, is a rapidly varying function of position
with the property that (from the field equations, as
discussed in Sec. 1V)

e™0™h = O(1).

with

h = O(), (A2)

L2%y = O(1), (A3)

(A4)

Since we assume /4 is a high-frequency radiation, we
assume this holds through m = 2.

Furthermore, since we demand y be a background,
we assume

(hy = O(e), (A5)

where this average is over a linear extent /, such that
€ K I L 1 = L. Coordinates which fulfill this require-
ment are acceptable “steady coordinates.”

The first problem to discuss is whether an average
can be done in a meaningful way. We contend that it
can, because we can make a correspondence between
the geodesics in g and those in y.

We do this by looking for a solution to the geodesic
equation of the form x = %x + ¢%2x. That such a
solution exists can be seen by writing out the geodesic
equation

dz(ox” -+ e 2xu) + (OI‘p + SN ) d °x*
ds® et Y ds

d %°
ds

= 0(e),

(A6)

where "I'*,, are the terms containing derivatives of /,,
and where we assume %x is rapidly varying solution, so
€20%%x = O(1). Since solutions of the geodesic
equation are unique, there will thus be a 2x(s) correc-
tion of the form we have written. Further, by averaging
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this Eq. (A6) (in any crude way), we find the
background geodesic equation, which identifies the
parameter s.

We then suppose that we want to do averages by
parallel transport along geodesics in g. We see that
some quantity 4, when carried back along geodesics
in g, differs from the same quantity carried back
along a geodesic in y by a term of order €2(04/0x).
Since all our high frequency quantities have 04/0x ~
€14, we see that this term is small and vanishes in
the high frequency limit. So we can do averages in 7,
and make small errors; in the limit € — 0, we obtain
the same result as if we carry back along geodesicsin g.

We thus postulate the following sort of average:

(TR(x)) = fN 7 EXTHY N F e, X

where f is a smooth and slowly varying weighting
function with 9f ~ fand ff=1. y%" is a bitensor®
(with the appropriate rank) of parallel transport
along the geodesics in y. N, is a region in y on which
a geodesic coordinate patch centered on x is non-
singular; so Ly~ L = 1.

We want f to fall off smoothly with “Euclidean
distance” from x. While we could make these ideas
rigorous and give estimates of errors, here we simply
take the following viewpoint.

Consider some / such that 1K/ Ly. At x,
construct a Minkoskian coordinate system. Since
I L Ly, we can neglect the deviation from flatness
and treat the Minkowski coordinates x, y, z, and ¢ as
in flat space. In this frame,

(T™(x)) = fN dyf(x — HTQ),

3
Ny = {yl > (= ¥ < 12},

agrees with our previous definition sufficiently well,
where now f falls off within a2 Euclidean distance /
from y.

This average is the sense in which we mean (h) =
O(€) as e — 0.

Now consider coordinate ripples. First consider a
high-frequency transformation:

x—>x + of, Buv > 8uv — 26§(n;v) .

We want this to be a small-gauge transformation, so
o is a small parameter and &,.,, = O(1). However, our
high-frequency assumption demands £ = O(o), since
derivatives are large.

253, L. Synge, Relativity: The General Theory (North-Holland
Publ. Co., Amsterdam, 1964).
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With this estimate of the orders, we find
eh — eh — 20&,
as the change in 4 under the coordinate change, to
first order in € and o.

We also have % — y = % 4 dy, the change in y
being given as dy. We will show that dy is small
enough so that our separation criteria (A1)-(A5) are
still satisfied through O(e) or O(o).

By a discussion similar to the one above, we can
see that the geodesics in g are still given to order € or
o by the geodesics in . Thus (h) is unchanged at
order €, so (h) = O(e) is still true, and so we must
consider only the quantity dy = —2(¢§(,.,)), Which
might contribute a secular shift in y. We find

) = fN B S — X)BL),
—f d4x'§,,»f,vr = 0(0). (A7)
Ny

The first term vanishes because it can be taken to a
surface integral where f vanishes; the second is of
order ¢ because of our assumptions on &.
Thus we find
Vv = Vuo + T Pyy (A3)
where p,, is of order one, and so we have all our
criteria (A1)-(AS5) satisfied by the split
v + (eh — 20&(,.))
if they were initially satisfied by the wave-background
separation y + eh.
We see that
= %1 + 0(c%),
oy = 9 °(1 + O(o)),
%y = 0 (1 + 0(1)),

which estimates allow that p,, may be rapidly varying,
$0 0"p,, = O(07"py).

Though y still satisfies the criteria (A1)-(AS5), we
may wonder about R', (y), since we see that second
derivatives of y may change by substantial amounts.
To investigate this, we change variables in (A7) to
y' = x" — xto find

) = L‘s,(y' + %), f(") by’
- a%( fnf"(y' + 0f() d‘y),

so the correction term is p,, = p(,.v) -

(A9)

RICHARD A. MATZNER

Counting orders, we see that it is only those terms
in R which involve two derivatives on p,, which
are of order one. But because of the symmetries of the
Riemann tensor, these terms exactly cancel one
another. This is familiar from linear gravity theory,

and may be checked explicitly. Thus

RO () = R0 (V)L + 0(0)).

If we consider long-wavelength coordinate trans-
formations, we have & = O(1), 8¢ = O(l), and then

87 Yuw — Gf’fyuv + Eahuv,zél1 + Eh,n,-

The first gauge term consists of a slow coordinate
changeiny,,andsoiseasily handled, and, for instance,
allows precisely the same local Minkowskian space for
averages as was discussed above. Since this is so, we
still have ¢#) unchanged and () = O(¢), and we must
consider only

(P 26%) =J(§‘fhuv),z d'x —fh,,,,(f‘f )1 d* = 0(e),

so the new term eo(h,, ;6*) is of third order in

smallness, and again y is invariant, as is R{, ().
We note that this invariance of R{S, corroborates

Isaacson’s finding® that T is invariant to this

order, where

Rgv(y) - %yuvR(O) = 87TT;(4aVV)
= —e¥R® — 1y,,R?). (A10)
Isaacson® showed the invariance of the r.h.s. of (A10)
under small-gauge transformations; we have just
shown the invariance of the left-hand side.
Isaacson also discussed® the invariance of the field
equation obeyed to lowest order by A:

RY(y + eh) = “0”h = 0.

This follows for the high-frequency coordinate trans-
formations because of the symmetry &, , of the
gauge term and the symmetries of R(), , so that the
highest-order terms exactly cancel one another. In
the case of low-frequency coordinate transformations,
the dominant terms in “[1”h are 0%h,, (ordinary
derivatives), so the dominant contribution from the
gauge term is eo&*0%h,, ;. This vanishes because

“D’!h - 0.
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A method is shown for calculating the multiplicities occurring in the reduction of a reducible representa-
tion of a compact group. The reducible representation is obtained by constructing induced irreducible
representations of a noncompact group and then restricting the elements of this representation to ele-

ments of the compact subgroup.

L. INTRODUCTION

One of the ways in which noncompact groups are
being used in elementary particle physics is the forma-
tion of supermultiplets which have an infinite number
of “particles” in them. One assumes that particles are
grouped into finite-dimensional multiplets; then an
infinite number of these finite-dimensional multiplets
are needed to “fill up” the infinite-dimensional
supermultiplet which is generated by the noncompact
group.

For example, the nonrelativistic hydrogen atom
has an infinite number of bound states, classified by
the “n” quantum number. The finite-dimensional
multiplets of the nonrelativistic hydrogen atom are

the angular-momentum multiplets, coming from the

group SO(3),® which are contained in the “hidden
degeneracy” finite-dimensional multiplets arising from
the group SO(4). These multiplets are then brought

* Permanent address: Department of Physics and Astronomy,
University of Iowa, Iowa City, lowa.

! The notation for groups is as follows: SL(n, C), SL(n, R)
denotes the group of n X n unimodular matrices over the complex
and real fields, respectively. SU(n, m) is the set of complex unimodu-
lar (n 4+ m) X (# + m) matrices leaving invariant a form

1_’

o

-1

with » plus-one’s and m minus-one's. Finally, Sb(p, q) is the set of
real unimodular (p + ¢g) X (p + ¢) matrices leaving invariant the
form

h.
O

—1

with p plus-one’s and ¢ minus-one’s.

together into an infinite-dimensional supermultiplet
generated by the group SO(4, 1).2

Other schemes, such as that of Cook, Goebel, and
Sakita,® take finite-dimensional meson multiplets to
form an infinite-dimensional supermultiplet, while
Riihl and Fronsdal® use as their starting point the
fact that SU(6), which couples ordinary spin and the
internal SU(3) symmetry, is contained in the non-
compact group SL(6, C). Gell-Mann, Ne’eman, and
Dothan® discuss the possible uses of other groups, like
U(6, 6) and SL(3, R), in forming infinite chains of
multiplets. Finally, Barut has shown® how one can
use noncompact groups to classify the multiplets
coming from the n-dimensional harmonic oscillator
and the rigid rotator.

Now the mathematical problem which is common
to all these examples is to find an irreducible unitary
representation of a noncompact group which gives the
correct energy levels and the degeneracy of these
levels for a given physical system. The physical
system generally has finite-dimensional multiplets
coming from a compact group—which in turn is an
expression of the symmetry (or approximate symmetry)
of the system. One assumes that there are an infinite
number of these “symmetry multiplets” and they

2 H. Bacry, Nuovo Cimento 41, A, 222 (1966); E. C. G. Sudarshan,
N. Mukunda, and L. O’Raifeartaigh, Phys. Letters 19, 322 (1965);
M. Bander and C. Itzykson, Rev. Mod. Phys. 38, 330 (1966); A. O.
Barut, P. Budini, and C. Fronsdal, Proc. Roy. Soc. (London) A291,
106 (1966).

3 T. Cook, C. J. Goebel, and B. Sakita, Phys. Rev. Letters 15, 35
(1965); C. J. Goebel, T. Cook, and B. Sakita, ‘“Proceedings of the
Third Coral Gables Conference on Symmetry Principles at High
Energy (1966);” T. Cook and B. Sakita, ““Induced Representations
of Strong Coupling Groups,” preprint, Argonne National Labora-
tory, May (1966).

¢ P. Budini and C. Fronsdal, Phys. Rev. Letters 14, 968 (1965);
W. Riihl, Nuovo Cimento 44, 572 (1966). See also the articles by
C. Fronsdal and W. Rihl, High Energy Physics and Elementary
Particles (IAEA, Vienna, 1965).

5 Y. Dothan, M. Gell-Mann, and Y. Ne’eman, Phys. Rev. Letters
17, 148 (1965).

8 A. O. Barut, Phys. Rev. 139, B1107, B1433 (1965); P. Budini,
Nuovo Cimento 44, 363, 418 (1966); A. Bohm,"Dynamical Groups
of Simple Non-relativistic Models;”preprint, International Center
for Theoretical Physics, 1C/65.82; N. Mukunda, L. O’Raifeartaigh,
and E. C. G. Sudarshan, Phys. Rev. Letters 15, 1041 (1965); B.
Vitale, three lectures given at the Institute for Mathematical Sciences,
Madras, India (March, 1966).
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are to be properly arranged with respect to the unitary
irreducible representation of some noncompact group.
Thus, if G is some noncompact group and K is a
compact subgroup of G, the mathematical question
to be asked is, How often does anirreducible representa-
tion of K appear in an irreducible representation of G?

Let G(g) be an irreducible unitary representation
of G, while X.(k) is an irreducible unitary representa-
tion of K.” Then §(k) is a reducible representation of
K and can be decomposed into a direct sum of
irreducible representations of K:

S(k) = % n(8, J)H(k), )
where n(S, X) is the multiplicity; that is, the number
of times the representation (k) appears in the
decomposition of the reducible representation G(k).
In applications of noncompact groups to particle
physics, an important problem is to get the correct
multiplicity. This paper will demonstrate a simple
technique for finding n(8, X) for a class of representa-
tions of G, namely, the induced representations. Such
representations have been extensively studied by
Mackey8 and Gel'fand and his collaborators,? and
generate a large number of the known irreducible
representations of the noncompact groups. In what
follows, no prior knowledge of induced representation
theory is assumed, so that Sec. II will present an
outline of the relevant theory needed for the later
sections, which deal with the multiplicity problem for
semisimple groups (Secs. IIT and IV) and semidirect
product groups (Sec. V).

II. INDUCED REPRESENTATION THEORY

The main results of Mackey’s work needed in this
paper are what he calls the subgroup theorem and the
Frobenius reciprocity theorem. To understand these
results it is necessary to explain what is meant by an
induced representation.!®

Let G be a given noncompact group and H, a
subgroup of G' (H, may, for example, be the compact
subgroup K mentioned above). Let J€, be an irreduc-
ible representation of H, acting on the vector space
U (¥,,). Consider functions / which map elements g of

7 The notation to be used is that capital letters will denote the
various groups while small letters will denote elements of the
groups. Script letters will be used to denote the representations of
a group. A superscript on a Script letter indicates a particular
representation or class of representations.

8 G. W. Mackey, “The Theory of Group Representations,” Dept.
of Mathematics, The University of Chicago (1955).

? I. M. Gel'fand and M. A. Neumark, Unitdire Darstellungen der
Klassischen Gruppen (Akademie Verlag, Berlin, 1957).

10 See Ref. 8, pp. 135 and 146 for the subgroup theorem and the
Frobenius reciprocity theorem, respectively. Only a restricted
definition of induced representation will be used in this paper; for
the more general definition, see Ref. 8, p. 119.
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G into VU (K,):

gL VXY, f(2) € V(K. 2
[Often U(,) will be a one-dimensional space—then
S carries the elements g into the complex numbers.]
Now consider the set of functions f(g) satisfying the
condition f(h,g) = ¥,(h,) f(g) for all h, in H, and g
in G. This set forms a vector space

V() = {f| f(8) V@), fhyg) = Hs(h)f(g),
VYheH,geGh. (3)

The representation defined by U(g’) f(g) = f(gg)
on the vector space ‘\AJ(Jel) is called the induced
representation of G. The induced representation

‘ILJel(g’) will be a unitary representation of G if it is

possible to make ‘fT(J(il) into a Hilbert space possess-
ing the correct measure with respect to the group G.
That is, it is necessary to find a measure u(g,, g») such
that

(f(g0), f'(82)) = | f*(8)S"(g2) dpu(815 82)  (4)

(where g,, g, are elements of G and * means complex
conjugation). Then unitarity means

Wg") f(gy), W(g") f'(g2)
- f [ (g) £ (gD UH(g) £ (2] diCey g2)

= f F4(2:8)f (8:8") dulgs» 20)

~ f FH(eD (g du(gag ™, o). ®)
If it is possible to find a measure satisfying
[uter 80 = [t 0g. @

then
Wo (g (g, W) f (g2) = (f(g),f'(g2)s (7)

and the representation is unitary. References will be
given in Secs. IV and VI which show how measures
can be constructed for certain classes of induced
representations of noncompact groups. Notice that it
is not necessary that J¢, be a unitary representation of
H in order that ‘ILJel(g) be a unitary representation
of G. However, it is a necessary (but not sufficient)

condition that J¢, be irreducible in order that CUo‘m‘(g)
be irreducible.

With the above definition of an induced representa-
tion, it is possible to paraphrase Mackey’s subgroup
theorem in the following way: Let H,;, H, be sub-
groups of the noncompact group G and let &, be an
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irreducible representation of H;. Assume further that
it is possible to write G = H,H,. Then U*i(g)
restricted to elements of H, is equivalent to U3 (g,
where J is the restriction of the representation J¢;
to the subgroup H; N H, = J; that is, if X,()) =
&(j), then

WHs () = U3 (hy), ®)

where 2z means *“is equivalent to.” Thus, the subgroup
theorem allows one to write the reducible representa-~
tion %161(@) of H, as a reducible representation
induced by a subgroup of H,.

To carry the decomposition further it is necessary
to introduce the Frobenius reciprocity theorem. Let
J be a subgroup of the compact group K, and let
¥, & be irreducible representations of J and X|
respectively. Then the Frobenius reciprocity theorem
says that WI(k) contains J(k) the same number of
times as X.( ) contains J(j):

UP) 2 3 (3, B,
(f) == % n(¥, H30)-

Now let K = H,. Then Eqs. (8) and (9) can be
combined to give

WFr(k) = UI(K) = % n(X; HFE).

&)

(10)

But the multiplicity #(S, X) of Eq. (1) is what we are
interested in finding and, according to Eq. (10), this is
equal to n(X, ). Further, n(X, §) can be obtained
solely from the compact groups J, K. Thus, the
problem of finding the multiplicity n(S, X) has been
reduced to the problem of finding the multiplicity
n(X, %) and this problem can be solved in several
different ways.

For example, since J and K are compact groups,
one can use the characters of the irreducible repre-
sentations of J and K to compute n(X, §). Let y*(k)
be the character of the irreducible representation
J(k), while @3(j) is the character of the irreducible
representation ¥(j). Then taking the trace of the lower
equation in (9) gives

1) = ; (&, He(j)- (11)

The characters satisfy orthogonality relations, so that
[Fae haun =sy, 1

where du(j) is the Haar measure on the group J.
Multiplying Eq. (11) by ¢¥*(j) and integrating with
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respect to du(j) gives

f GG dut) = f 3 1%, D) du)

= ; n(x, 3)(533’
= n(K, §") (13)
or
(K, ) = f O D ). (4

Thus, a knowledge of the characters is sufficient to
find the multiplicities. For a discussion of character
theory and also how to find the characters of the
classical compact groups, see Ref. 11. For other
techniques which can be used in finding the n(X, )
(such as using weight diagrams) see reference 12.

- Notice that if K is the largest or maximal compact
subgroup contained in G, it is possible to put an upper
bound on n(¥, ¥). For J must be at least the identity
subgroup, which has the trivial representation
&(j) = 1. Then, according to the Frobeniusreciprocity
theorem, Ul(k) (called the regular representation of
K) contains X(k) as many times as X(e) contains
1 (e is the identity element). But X(e) is the identity
matrix so that n(¥, 1) = dim X, Therefore, for K the
maximal compact subgroup n(X, 1) < dim X.

The question now arises, How often is it possible
to write G = H;H, and How many of the unitary
irreducible representations of G can be obtained from
induced representations? The answers to these
questions will be taken up in Secs. Il and V for G, a
semisimple group, while in Sec. V semidirect product
groups will be considered.

HL. G, A SEMISIMPLE GROUP

When G is a semisimple group, it is possible to use
the Iwasawa decomposition'®

G = ANK,, (15)

where K, is the maximal compact subgroup of G,
A is an Abelian subgroup of G, N is a nilpotent
subgroup of G and a normal subgroup of AN.

Now it is known that, from the Iwasawa decom-
position, it is possible to generate a class of irreducible

1 D. E. Littlewood, The Theory of Group Characters (The
Clarendon Press, Oxford, England, 1940); J. P. Antoine and D.
Speiser, J. Math. Phys. 5,.1226 1560 (1964); D. Speiser, Group
Theoretical Concepts and Methods in Elementary Particle Physics,
fq GCZi)ﬁrsey, Ed. (Gordon and Breach, Science Publishers, New York,

*R. E. Rehrends, J. Dreitlein, C. Fronsdal, and B. W, Lee,
Rev, Mod. Phys. 34, 1 (1962); A. Salam, Seminar on Theoretical
Physics (IAEA, Vienna, 1963).

'* R. Hermann, Lie Groups for Physicists (W. A. Benjamin, Inc.
New York, 1966).
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unitary representations of G called the principal
nondegenerate series.’* Choose H, of the subgroup
theorem so that

Hy; = C(A)AN, (16)
where C(A) is the centralizer of 4.1 Then
K, (hy) = C(c)A(a), (17)

where C(c) is an irreducible unitary representation of
C(4) and A(a) is an irreducible unitary representation
of A. Often C(A4) will be Abelian so that C and A
are both one-dimensional. In any event ‘I_LJel(g),
with J¢; defined in Eq. (17), will generate a class of
unitary irreducible representations on a Hilbert
space defined by the inner product

) = L/H @A, (8)

where du(g) is the measure on the coset space G/H,
and the f, f' are elements of the vector space ‘fJ(JCl)
defined in Eq. (3).

Choose H, = K,. Then G = H,H, and the
principal nondegenerate series comes from the
induced representations clLJel(g) [where H, is defined
in Eq. (17)] so that the subgroup theorem is satisfied.
Further, J = H, N H, = C(A)AN N K, so that

w*a(k,,) = W(k,,)

=~ % n(J{’m > E)Jcm(km) (19)

If K is not the maximal compact subgroup K, it
follows that K < K, < G, since K is assumed to be
compact. Therefore

WHr(k) == W (k)
o J.z_f (K, , (k)

o 3 1y, Pn(K,, K)X(k)  (20)
Iom,I6
and the multiplicity, »($, X) of Eq. (1), is
n(8, ) = 3 n(K,,, Hn(X,, X); (21)

m

that is, the calculation of the multiplicity #(S, J)
still depends only on the multiplicities of subgroups
of K.

Using the decomposition H; = C(4)AN, it is also
possible to find the multiplicities arising from the so-

4 E. M. Stein, High Energy Physics and Elementary Particles,
A. Salam, Ed. (IAEA, Vienna 1965). This is a main reference for
this paper. It contains a discussion of the various classes of irre-
ducible representations of the noncompact groups and also gives
many mathematical references, including references to other work
done on the multiplicity problem.

15 The centralizer C(4) is the set of elements of X,, which commute
with A; thus C(4) = {k| k€ K, ,ak = ka V¥ a € 4}.
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called supplementary nondegenerate series. In this
case
Ki(hy) = C(c)A(a), (17

where now A(a) is a nonunitary irreducible representa-
tion of A and the inner product is defined by a measure
much more complicated than that of Eq. (18). But
once the proper nonunitary irreducible representations
of A have been chosen, the reduction and calculation
of multiplicities proceeds exactly as in the case of the
principal series.

A second class of unitary irreducible representa-
tions of G arising from induced representations is the
degenerate series. To get this class of representations,
consider elements a of A which have the property that,
considered as matrices, some of their matrix elements
are degenerate. Pick a class A4 of these elements and
consider

CA)=1{klkeKy,ka=ak,Yac A} (22)

and, as before, let H; = C(4)AN. Then, depending
on the group under consideration, a certain class of
one-dimensional representations of H, will induce the
principal and supplementary degenerate series of G.
(For more details see Ref. 14 and the references
given therein.)

Other remaining representations are the so-called
discrete series of unitary irreducible representations
and certain exceptional representations. These repre-
sentations will not be treated in this paper, although
the discrete series has been used in physical applica-
tions, as, for example, in the n-dimensional harmonic
oscillator where the relevant group is SU(n, 1).®
There is some hope that the discrete and exceptional
representations can be written as induced representa-
tions, the main problem being to construct an appro-
priate Hilbert space.2¢ If the appropriate Hilbert space
could be constructed, it would be possible to calculate
the multiplicities along the lines sketched in this
section.

1V. SOME EXAMPLES OF MULTIPLICITIES
FOR THE SEMISIMPLE GROUPS

Consider first the group G = SL(n, C). Its Iwasawa
decomposition is given in Ref. 13 and can be written
as

1gnl
[&aal O

(0]
{gnal

18 E. Thieleker, Argonne National Laboratory (private communi-
cation).
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1 g1 &1n
1 PR g2n
N = 1 ’
O
1
K, = SU(@n), (23)
where

2wl = S
T Igaal 8l

in order that the determinant of 4 be one. It is not
hard to check that C(4), the centralizer of A, is the
diagonal matrix

Bu 82 . B

Iglll Ig22l lg'nnl
The unitary irreducible representations of H; =
C(A)AN are

hy — %,(g;) = Ki(8e2, " * > Gun)-
. me X mn
Klg;) = |g22‘wz<_g2i) T Ignnllp"(ﬁn‘) , (24)
Igzzl Ignn|

where the m = m; are integers and the p = p; real

numbers. Thus, ‘ILJe‘(g) will be labeled in the
principal nondegenerate series as W™®(g). To see
how W™P(k,,) decomposes into irreducible repre-
sentations of K,, = SU(n), it is necessary to calculate

J = H, N K,, = C(A)AN N SU(n)

gu o)
1gul
8o
(gael
O 8nn
|8 nnl
eial
e‘iaz
= ) » (25)
gt
where
i“:‘:___gi’ j=1,---,n.
185!

OF NONCOMPACT GROUPS
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Then the relevant representations of J are, according

to Eq. (8),
Hog, * -y o) = gitmaaztmaast - +maxn)
_ ei(m-a), (26)
where o = (g, , «,) and
WAk, = W(k,) = W™(k,,)
= 3> n() mXh'k,), @7

where the [A] are the dominant weights which label
the.irreducible representations of SU(n). Now by the
Frobenius reciprocity theorem # ([A], m) is given by
the number of times the representation m of J occurs
in the representation [A] of SU(n), when the elements
of SU(n) are restricted to elements of J. But these
elements are precisely the diagonal elements of SU(n)
and are easily obtained from the weights associated
with the [A] representation.

Thus, consider the set of weights |[A], wg) associated
with the irreducible representation [A], w, being one of
the d =1,---, D weights of the representation [A]
(D is the dimension of the representation). Once the
weights are known (ways of finding weights for a
representation [A] are found in Ref. 12), the diagonal
group elements of SU(n) have [A] representation
matrices which can be written as

ee O
eiwz -
€Mt = . (28)
O eiwy ‘a
The trace of this matrix is
x[k](a) — eiwl'a + ein'u + e + eiwl, 'a, (29)

so that the multiplicity, according to Eq. (14), is

n([A], m)
1
~ @m
_ 1
- (277,)7;—1

2
f x[x](a) e~ima Jo

0

27
f (eiwl-u + ein'u + -+ eiWD'u)
0
X e ™ ¢ da,  (30)

which is equal to zero unless m equals some weight
vector wy. Thus, the multiplicity »([A], m) can
immediately be read off of the weight diagram.

For example, in SL(2, C), K,, = SU(2) and the
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weight diagrams are one-dimensional:
—2j —=2j+1 —2j—1 2j
X X e X X ,

3D
where j is the ordinary “total spin” quantum number.
Then
n(j,m) =1, |m| <2,
=0, |ml>2. (32)

To see how a multiplicity greater than one can
occur, consider SL(3, C) with X, = SU(3). Then the
8-dimensional representation of SU(3) labeled by
[A] = [1, 1] has two weights (0, 0) which differ by
“total isotopic spin.” Nevertheless, for m = (0, 0),
n([1, 1], (0, 0)) = 2.

To get the multiplicity for the supplementary
nondegenerate series, it is sufficient to note that the
unitary irreducible representations of H, in Eq. (24)
labelled by m and p go into nonunitary irreducible

lgul
Igul

Ignl
|gasl

Wl

with each g;; occurring n; times. Once theny , -« «
n are given, it is possible to write C(A4) as

s Ny
C(4) = C(n)

U(ny) o
U("z) .

0] U(n,)
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representations with m = 0 and p becoming a set of
pure imaginary numbers over a certain range. Once
this is known, the multiplicity is obtained in exactly
the same way as was done for the principal series,
which means that the multiplicity for the supplemen-
tary series is given in Eq. (30) with m = 0.

For details concerning the nondegenerate and
degenerate series of representations of SL(n, C), see
Refs. 9 and 14. In Ref. 9 the same results for the
multiplicities of SL(n, C) as those given here are
obtained, but different techniques are used.

To get the multiplicities arising from the degenerate
series of representations of SL(n, C), it is necessary to
specify the degenerate elements 4 of Eq. (22). Pick a
set of r < n integers n,, - - -, n, such that n; + ny +
-+ -+ n, = n. The degeneracy of an element a of 4
is specified by these r integers in the sense that for a

fixed ny, -+ -, n,, an element a can be written as
o
(33)
|gaal
18]
18+l
1 sy(n,) (@)
|g11l .
o £ SU(n,)
(gl
e*1SU(n,) O
= T . (34)
(@) e SU(n,)
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Then representations of H; = C(n)AN are chosen to be

hl ——>J€1(g22, T, gr'r)
= | a2 - - |g,,|*7e (35)

and the principal degenerate series of irreducible
representations is written as W™ "7 Ml Tl (g) =
w™e(g).

It is to be noted that picking the one-dimensional
representation of H, given in Eq. (35) amounts to
picking the trivial one-dimensional representations
for all the SU(n;) groups.

1m0y
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The reduction of the reducible representation
a™e(k,,) is readily obtained, since J = H; N K, =
C(n) and ¥ = &™® = gilmbst+m)  To get the
multiplicity #([A], m, p) it is necessary to see how
many times the representation ¢™*® of C(n) is con-
tained in the representation [A] of SU(n), when the
elements of SU(n) are restricted to C(n). Now since
C(n) consists, in part, of direct sums of SU(n,) groups,
the Dynkin diagram corresponding to SU(n) can
be broken up into subdiagrams in the following
way:

0 0 0 0 0 0 0 0 0---0 0 0 0, (36)
—— \‘/—/ St
8U (n,) SU (ng) SU (ng) SU (ny)

Since none of the SU(n;) groups are connected to
each other, the weight diagrams of the [A] representa-
tion of SU(n) will break up into a series of orthogonal
subspaces for each of the SU(n;) groups. Further,
since the only representation of any SU(n;) being
considered is the identity representation, the weight
Wy, d=1,---, D of the D-dimensional [A] repre-
sentation of SU(n) must be of the form

wd=(0,."1()’"230:”.,0,”3:
————’ ————
ni n
0’...,0,...ur,0’...’0) (37)
D —— N—————
n3 nr

in order to contain the representation &™° of C(n).
Then the multiplicity #([A], m) of the representation
e™® will be given by the number of times the weight
w; of Eq. (37) occurs in the [A] representation of
SU(n), and, by the Frobenius reciprocity theorem,
this gives the multiplicity of representations occurring
in the decomposition of U™*(k,,).

As an example, consider the group SL(3, C) and
its principal degenerate series representations labeled
by (1, ny) = (2, 1). Then

C(n) = C(2,1) = (U(2) 0 )

0 U@
esUR) 0
B ( 0 e“’z) %)
with 8, = —0, to make the determinant of the matrix

equal to one. The representations of SL(3, C) are
labelled by m,, p, and the reducible representation
Wmer2(k,,) has a multiplicity n([A], m,, p,), which is
calculated using the Dynkin diagram

0——o0

—_——

SU(2)
and looking for weights w, = (0, uy) of the [A]

(39)

representation of SU(3). Thus, for [A] = [1, 1] there
is a weight w, = (0, 0) occurring once when the SU(2)
representation is the trivial one-dimensional repre-
sentation. Therefore, n([1, 1], 0, p,) = 1.

Asasecond class of groups, consider G = SL(n, R)."”
The Iwasawa decomposition will be similar to that of
SL(n, C), except that K,, will be SO(n) rather than

SU(n):
351 O
A= R
O &nn
1) g123""gln
L - » 82n
N= - (40)
O 1

with the coefficients g;; of 4, N, and K, being real.
The centralizer C(A4) will contain no elements other
than those already in 4 so that H, = AN. Because H,
now has only real coefficients, its irreducible repre-
sentations will no longer be labelled by m and p.
Rather, the m label is replaced by a “parity” label so
that the representations of H, are written as

» &nn)

= |gao|"?Py(s80 g39)  + - |8nnl"Po(580 g,0)  (41)
in the principal nondegenerate series. In Eq. (41)
sgn g;; is the sign of g, and P,(sgn g;,) takes on the
values +1, depending on whether the parity is plus
or minus. The principal nondegenerate series of

hy — ¥,(gae, " - -

17 B. D. Romm, American Mathematical Society Translations,
Ser. 2, 58, 155 (1966) ; E. Thieleker, “On Some Infinite Dimensional
Representations of Lie Groups”, preprint, Applied Mathematics
Division, Argonne National Laboratory, Argonne, Illinois (1966).
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representations are then written as

UKg) = WP Froose =2 on(g) = UL ().

To get the multiplicity occurring in the reducible
representation WP?(k,,), it is necessary to calculate
J = AN N SO(n). Now SO(n) can be written as
SO(n)

cosf, sin6, @)
—sin 0, cos 6,
1
0] 1
cosf, 0 sinf, )
0 1 0
—sinf, 0 cos0,
X 1 X
0] 1
1 0]
X
1
€08 O(pt_ny;p SN Opy2_pye
o —sin B(n’-n)/z Cos a(n’—n)/z

(42)
and since AN has only zeros for its subdiagonal ele-
ments, it is clear that sin 6; must equal zero, which
implies that cos 6; = 31 so that J is the finite group
of determinant one-diagonal matrices having only +1
as possible entries:

*1 O
+1
' (43)
O +1
J is Abelian of order 2"! so that §(j) will be labeled
by the “parity” representations of Eq. (41).
Finally, using the subgroup theorem and the
Frobenius reciprocity theorem, we get
WP e(k) 2= W (k) = WFlk,)

=~ > n([A], PYKL(K,,), (44)
[2]

WILLTIAM H. KLINK

where n([A], P) is the number of times the reducible
representation J*)(j) contains the irreducible repre-
sentation F*(j) of J (jis an element of J).

Since J is a finite group and its elements are obtained
by having cos 6; = +1 in Eq. (42), it is possible to
get the character of the irreducible representations
[A] of SO(n) and use Eq. (14) to calculate n([A], P).
For the fundamental representation of SO(n) the
multiplicity is then immediately obtained; for the
other irreducible representations of SO(n) there seems
to be no such easy technique.

To see what happens in the case of the fundamental
representation [A] = [0,---,0, 1], consider n = 3,
K,, = SO(3). From Eq. (42), SO(3) can be written as

cosf, sinf; O
SO0(3) = { —sin0; cosf, O
0 0 1
cosf, O sin0,
X 0 1 0
—sinf, 0 cos 0,
1 0 0
X |0 cosf; sinf,
0 —sinf; cos0, 42)
J will consist of 21 = 22 elements:
1 00 -1 0 o0
J={{0 1 0}, 0 -1 o},
0 01 0 o0 1
—1 0 0 1 0 0
0 1 o), 10 -1 0 (43)
0 0 -1 0 0 -1

Here each element of J is written as an element of
SO(3) with the cos 0, taking on the value 0 or =
radians. To get the multiplicity of the § representation
with parity label P = (4, —), for example, it is
merely necessary to take the trace of the elements in
Eq. (43) and use Eq. (14) to get

n([l]s (+9 _))
= L3 30)0)
2°°
=133+ (+1)(—=1) 4+ (=D(=1) + (=1)(—=1)]
= 1. 44)

Repeating this simple calculation for the other
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possible parity representations gives
n([1, (+, +) =0
n([lL (+a _)) = n([]-]a (—! +))
= n([1]1 ('—’ _))
= 1. 45)
It is clear that this procedure can easily be generalized
to arbitrary n.

To get the multiplicity for arbitrary representations
of SO(n) seems rather long and complicated. A
possibility is to build irreducible tensors from the
defining vector

T = k,T. (46)

That is, corresponding to an irreducible representa-
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tion [A] of SO(n), there is a tensor Tj,; which can be
written as a D-dimensional column vector, where D
is the dimension of the [A] representation:

fo] = ‘-:Dh](km)T[).] . 47

Since we are concerned only with the diagonal
elements of the J subgroup of SO(n), D™*(k,,) will be a
matrix with only plus and minus ones on the diagonal.
Once this matrix is known, it is easy to get its trace and
carry out a computation similar to Eq. (44). However,
the problem of getting the tensor 7}, is in general
nontrivial; Ref. 18 presents a method which is gener-
ally applicable.

As a last example, consider the group SO(p, g).
SO(p, q) can conveniently be parameterized as

. cosfl, O sinp,
cosB, sinf; O
' 0 1 0 @)
—sin f; cos f; .
—sinf, 0 cosf,
O Ip+q—2
O Ip+a—3
coshf,.,,0---sinh B,
0 0
. Iaz+a—2 O
1, , . O €08 Bipra-prariz S0 Biprap—(praye | (48)
s O —sin /3(1,+,,)z_(p+q)/2 cos Ig(p+a)2—(xz+q)/2
sinh f8,,,,0---coshf,;
O Iy

where there are (p* — p)/2 + (4% — ¢)/2 matrices which involve cosine and sine terms and

P+9*—(+9 @ -p

¢ —q

2
matrices which involve cosh and sinh terms.

7 T =M

In the Iwasawa decomposition, K,, = SO(p) ® SO(g), while if the convention P = q is chosen, A

can be written as

cosh ; 0"
cosh f,
O
. cosh g,
A= sinh g,
sinh g,
O sinh 5,

sinh 8, -0
sinh B,
sinh g,
cosh §, (49)
cosh g, -0
O - : cosh 8,

18 M. Hamermesh, Group Theory (Addison Wesley Publishing Co., Reading, Massachusetts, 1962).
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Then the centralizer C(A) is seen to be

I, 0 0
CA =0 So(p—q O], (50)
0 0 I,

where I, is the g-dimensional identity matrix.

The principal nondegenerate series of representa-
tions of SO(p, q) are induced by representations of
H, = C(A)AN:

hy — Xy(hy) = REASO(p — 9))
X (P (B -+ (B)™ (51)

where RIN(SO(p — ¢)) is the [A] irreducible repre-
sentation matrix of SO(p — ¢). Then v So(p,q) =
U™ e17 22 (SO(p, g)) is an irreducible representation
of SO(p, q).

The multiplicity of UM™:#1'"" 2 (SO(p) ® SO(q))
is obtained from Uﬁ(SO(p) X SO(g)) where J=
C(A) = SO(p — g) has the representation

¥ = RU(SO(p — 9)).

By the Frobenius reciprocity theorem, n([4],
[2,, A)) {where [4,, 4,] is the irreducible representa-
tion label for SO(p) ® SO(q)} is given by the number of
times the irreducible representation RU1(SO(p)) ®
RU(SO(q)) of SO(p) ® SO(g) contains the representa-
tion RU(SO(p — ¢)) @1 of SO(p — q) ® (e) [(e) is
the identity subgroup]; thus,

n([21, Uys AgD) = n([AL, [4,)) x dimension [A]). (52)

n([A], [4,]) is the number of times the [A] repre-
sentation of SO(p — ¢) is contained in the [2,]
representation of SO(p). It can be obtained either by
using weight-diagram techniques or calculating the
irreducible characters using Eq. (14). In any case,
there are procedures for getting n([], [4,]), which,
since they are in general complicated, will not be
given here.

V. G, A SEMIDIRECT PRODUCT GROUP

G a semidirect product group means that G can be
written as
G=TL,

TNL=(e), (53)

where L is a subgroup and T is an invariant Abelian
subgroup of G. In contrast to the semisimple groups
discussed in Sec. III, a complete representation
theory for semidirect product groups exists® in the
sense that all irreducible unitary representations can

H. KLINK

be obtained as induced representations of the so-
called little groups.

Let G(z) be an irreducible representation of 7.
The set of elements of G satisfying

{g|B(gtg™ = B(t)Vt e T}

forms a subgroup of G called the little group. Choose
H, () to be the little group and let &, be an irreducible
representation of H,(G). Then ‘bel(g) IS a representa-
tion of G and further, a certain prescribed class of
irreducible representations of H, generates all the
irreducible representations of G.

However, we are interested in finding the multiplic-
ity resulting from the decomposition of the reducible
representation ‘U)Je‘(hz). If H, is chosen to be L,
then G = H,H,, so that it is possible to write

(54)

Wy o ¥

=~ % n(L, LD, (55)
where ¥ is the representation of the subgroup J =
L N H, as defined in Eq. (8) and £(/) is an irreducible
unitary representation of L. It is also possible to find
the multiplicity occurring in the decomposition of
‘lLJel(k), where K is some subgroup of L, by using
Eq. (21).

As a simple example of a multiplicity calculation
for a semidirect product group, consider SO(3) as a
subgroup of the three-dimensional Euclidean group,
which can be written in matrix form as

S0(3) T,
T, S0(3) T
T, =( 0 1)
0 1

I, T\/SO(3) 0
0 1 0 1

The representations of the invariant Abelian sub-
group T are e®'T, so that the little group H,(p) is

cos sinf 0 T,
Hip) —sinf cos® 0 T, 57)
®=1 o 1 T,
0 0 0 1
for p # 0; its representations are
3@1(P) = ™" Teima’ (58)

where m = 0, +1, +2,--- labels the irreducible
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representations of

cosf sinf O

SO(R) = { —sinf cosf O

0 0 1
Then

W s03) = e (s0(3))
~ W™(SO0Q3))

o 3 n(j, mF(SO(3),  (59)
7
where the integer j labels the irreducible representa-
tions of SO(3).
SinceJ = L N H; = SO(2), the multiplicity n(j, m)
is found from the Frobenius reciprocity theorem to be

Im| < js
|m| > j. (60)

There are, of course, more irreducible unitary repre-
sentations than those given above; all of the repre-
sentations of the three-dimensional Euclidean group
are given in Ref. 19.

As a last example of multiplicity calculations,
consider the case when H, = L is not a compact
group. Choose G to be the Poincaré group and L to be
the Lorentz group. The unitary irreducible representa-
tions of the Poincaré group are well known®; in this
example we will consider only the positive mass
representations labeled by M. For these representa-
tions the little group which induces the representations
of the Poincaré group is

n(j,m)y =1,
n(j,m) =0,

1 0 T,
HM)=|10 So3) T |, (61)
0 0 1
while J = H; N L = SO(3). Therefore,
WMy o2 W) == > n(L, HE(D, (62)

£

where the integer j again labels the irreducible repre-
sentations of SO(3).

But the irreducible representations of the covering
group of L, namely SL(2, C), were discussed in
Sec. 1V and were labeled by m, p. Since SL(2, C) is

1% 3. S. Lomont, Applications of Finite Groups (Academic Press
Inc., New York, 1959), p.331.
20 See Ref. 19, page 328.
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the covering group of L, all of the unitary, irreduc-
ible representations of L will be contained in those of
SL(2, C). Thus, to get the multiplicity n(L, ;) it is
merely necessary to note that, by the Frobenius
reciprocity theorem, W™#(]) is contained in U’(/)
as many times as W™?(SO(3)) contains J(SO(3)).
But this multiplicity was calculated in Sec IV and
shown to be

n(j: m, P) = 19 |m| S];
n(j’ m, p) =0, |m| > (32)

Therefore, the multiplicity n(M, j, m, p)is given by

n(M,j,m, P)= ls |m|Sj,
n(M’ja m, P) = 0, |m| >], (63)

a result already obtained by Joos?! in his calculation
of the Clebsch-Gordan coefficients resulting from the
reducible representation u*+(L).

VI. CONCLUSION

The calculation of the multiplicity occurring in the
reduction of a reducible representation of the Lorentz
group [Eq. (62) has shown that it is not necessary
that H, be'a compact group]. In most physical applica-
tions H, has been a compact group, but, aside from
this physical motivation, the reduction theory needed
when H, is any noncompact subgroup of any non-
compact group G is much more complicated than that
given in Sec. II. Nevertheless, Mackey® has shown
that the subgroup theorem is generally applicable to H,,
a noncompact group, and also shown that Frobenius
reciprocity theorem generalizes as expected. Thus,
with the general subgroup theorem and the general
Frobenius reciprocity theorem, it should be possible
to get multiplicities for most subgroups of a given
group, as long as the irreducible representations of the
group can be written as induced representations.
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By utilizing a branch-dependent counting technique, exact relationships are developed which describe
the ensemble average of the kinetics of occupation by dumbbelis of finite one-dimensional arrays of
compartments. It is shown that, as the number of compartments per array tends to infinity, (6(t)), the
ensemble average of the fraction of an array which is occupied, is given by

0@ =1 — exp {—2[1 — exp (—»0)]},

where » is the striking frequency and ¢ is time. By contrasting these results with the statistics of one-
dimensional arrays of dumbbells, it is demonstrated that it is inappropriate to employ classical statistical-
mechanical methods (e.g., the Bethe approximation) to treat the kinetic aspects of occupation where
configurational correlation exists. (Here we define configurational correlation to be the situation in
which the occupation of a compartment precludes the occupation of one of its nearest neighbors.)

I. INTRODUCTION

It is well known! that the methods of statistical
mechanics can be used to treat the kinetic aspects of
physical phenomena only when certain assumptions
are made regarding the details of the mechanisms
involved. Thus, with appropriate assumptions such
essentially kinetic processes as carrier recombination,
adsorption, crystallization, etc., can usually be
treated by recourse to statistical concepts. Even in
situations where the dimensionality of the phenomenon
is restricted and where occupational correlation of the
Fermi-Dirac type exists (e.g., adsorption processes),
statistical methods are still applicable.?-® However, as
the present paper will show, when considering particles
which can occupy more than one compartment or
when the occupation of one compartment precludes
the occupation of one of the nearest-neighbor compart-
ments, a correlation (which we will call configurational
correlation) renders the classical statistical-mechanical
approach inappropriate. The neglect of such con-
figurational correlation has led to serious difficulties
in the literature. For example, it has resulted in the
failure of the Bethe approximation'—® and similar
statistical-mechanical techniques to predict nonunity
values for such quantities as (1) the saturation cover-
age” and (2) the maximum degree of crystallinity.®

The Bethe approximation, when applied” to the
T;Fowler and E. A. Guggenheim, Statistical Thermodynam-
ics (Cambridge University Press, Cambridge, 1952), Chap. XII.

2 R. H. Fowler, Proc. Cambridge Phil. Soc. 31, 260 (1935).

3 K. J. Laidler, Catalysis, P. H. Emmett, Ed. (Reinhold Publishing
Corporation, New York, 1954), Chap. 3.

1 H. A. Bethe, Proc. Roy. Soc. (London) A 150, 552 (1935).

5 R. Peierls, Proc. Cambridge Phil. Soc. 32, 471 (1936).

¢ G. S. Rushbrook, Proc. Cambridge Phil. Soc. 34, 424 (1938).

7J. K. Roberts and A. R. Miller, Proc. Cambridge Phil. Soc. 35,

293 (1939).
8 F. Gornick and J. L. Jackson, J. Chem. Phys. 38, 1150 (1963).

kinetics of the occupation by dumbbells of an array
in which each compartment has two nearest neighbors,
predicts that (S), the average probability of success
when attempting to place a dumbbell on such an
array on which g dumbbells reside, is

2(1 — 6)?
2—9

where 6 = 2¢/N is the coverage or the fraction of
compartments occupied. This equation indicates that
6 must be unity before the probability of success is
zero. Clearly this conclusion is incorrect because of the
creation of isolated, vacant compartments (see Fig. 1)
which cannot accommodate additional dumbbells.
Consequently, after a long period of time a saturation
situation arises in which the probability of success
becomes zero even though the coverage has not attained
the value of one.

Numerous attempts of an analytic®'® and Monte
Carlo!'-1% nature have been made to obviate this
difficulty, with particular interest centered on the
value of the saturation coverage. Similar difficulties
were encountered by Gornick and Jackson® when
dealing, in a statistical manner, with a more general
problem of the crystallization of linear polymer
chains, i.e., they calculated a maximum degree of
crystallinity of unity. This result, as they point out,
is incorrect because the length of some crystallizable
sequences may exceed the length available for them in
the polymer chain, so that they are “wasted” as far as
further crystallization is concerned.

S) =

b

], K. Roberts, Proc. Roy. Soc. (London) A 161, 141 (1937).
10 J, K. Roberts, Proc. Cambridge Phil. Soc. 34, 577 (1938).
11 J, K. Roberts, Proc. Cambridge Phil. Soc. 34, 399 (1938).
12 P, A. Redhead, Trans. Faraday Soc. 57, 641 (1961).

13 D, R. Rossington and R. Borst, Surface Sci. 3, 202 (1965).
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o
" F1G. 1. The creation of isola-
6% ?1%1°7 ted vacancies when dumb-
o 5Ty bells are placed on a
71y two-dimensional array.
o §1é
) o

An analogous difficulty is also encountered!* in
the problem of determining the average number of
cars which can be accommodated along a curb which
is divided into spaces which are half the length of the
cars.

It has been suggested® that these difficulties result
from the nature of the approximations inherent in the
statistical methods (e.g., the Bethe approximation)
which are inappropriate for values of the coverage,
crystallinity, etc., near unity. However, in a previous
article’ we have developed relationships which
exactly describe the occupation statistics for linear
arrays of dumbbells. We have shown that in the limit,
as the number of compartments per array tends to
infinity, these relationships reduce to those calculated
using the Bethe approximation for the case when the
number of nearest neighbors is two. We conclude,
therefore, that the saturation value of unity predicted
by the Bethe method is not the result of any approxima-
tions employed. Rather, the difficulty arises because
the counting procedure used in all classical statistical
calculations is not applicable to dynamic processes,
such as adsorption and crystallization, when configura-
tional correlations exist. The reason for this is that the
statistical-mechanical approach to this problem deals
essentially with the question of the number of ways of
arranging g dumbbells on a linear array of N compart-
ments without regard to the dynamic aspects of the
process by which the dumbbells are deposited. When
dealing with particles which occupy single compart-
ments, this approach is appropriate because the
occupation of a compartment is the only factor which
precludes further occupation (Fermi-Dirac correla-
tion). Thus one can assume that the occupation rate is
proportional to the fraction of compartments which
are.empty. For dumbbelis which occupy two adjacent
compartments, however, occupation of a particular
compartment may be precluded because its nearest
neighbors are occupied, i.e., isolated vacancies may
exist. Therefore one cannot determine the rate of
occupation by dumbbells of a linear array of compart-

14 P, E. Ney, Ph.D. thesis, Columbia University, N.Y. (1960).

( 18 D, Lichtman and R. B. McQuistan, J. Math. Phys. 8, 2441
1967).
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ments by asking the question, “How many ways can
¢ indistinguishable dumbbells be arranged on a linear
array of N compartments?” Rather one must ask the
question, “After m spatially random attempts to
place indistinguishable dumbbells on a linear array
of N compartments, what is the average number of
dumbbells on the array ?”” When dealing with particles
which occupy a single compartment, the answers to
both these questions lead to identical expressions
which can be utilized to describe the kinetics of
occupation. However, when considering dumbbells,
these two questions have different answers because
not only do the number of dumbbells on the array
affect the answer but the configuration of these
dumbbells can also influence the number of additional
dumbbells which the array can accommodate.

II. CALCULATION

To answer the second of these questions we consider
an ensemble composed of a large number of systems,
each of which is a linear array of N compartments.
These systems are struck by dumbbells at the same
rate in a spatially random manner. If a double vacancy
exists where the dumbbell strikes, the dumbbell will
stick; if not, it will be rejected. For example, (see
Fig. 2) if N =5 after the first attempt to place a

N=5
m=|
oto
oto
040
m=2
o0 ofo o{o Lo oto
oo oto o oto|oto
odo |ofo ofo oto o
ofo oo oto Joto o4o
m=3
O o040 | 04 O
o o o040 [oto ot+o oto
o0 |oto o4o | o] ofo|oto oto| |oto
Lo lo o lo lo| oo o o
[o oto o oo (oo
o4O O+ o410 o0 | 010
o{o o4o oo o+o[oto
oo | o o+0 | o] ofo|oto oto (oo
oo oto | o] oo olo o040 | 04
o | oo 3 oo olo
o040 |oto o] oto oo
to | odo olo
© olo o o] o] o]
oo o0 010 | 040 oo [ 040 o040 [ o-+o
oto o040 ofo oo oo oto
o4o odo oto[oto oo oo

F1G. 2. The arrangements possible after m attempts to place dumb-
bells on a linear array of 5 compartments in a spatially random
manner.
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dumbbell on each system of 5 compartments in a
random geometric manner, } of the systems will have
the dumbbell occupying the first and second compart-
ment; } of the systems will have the dumbbell occupy-
ing the second and third compartment, etc. After each
system has been struck once, each of the four arrange-
ments shown under m = 1 in Fig. 2 has an equal
probability of occurrence. For those systems in which
the first dumbbell occupies the first and second com-
partments, the second dumbbell cannot occupy the first
and second compartment or the second and third
compartment, but it can occupy the third and fourth,
as well as the fourth and fifth compartments. Each of
the arrangements shown in the first box under m = 2
is thus equally probable. If the first dumbbell had
occupied compartments two and three, then the
second dumbbell could only have occupied the
fourth and fifth compartments as shown in the second
box under m = 2, etc. Thus, for N = 5 after each
array has been struck twice by dumbbells, the average
coverage (averaged over the entire ensemble) is
(8(2, 5)) = 0.55. This process is then continued for
any m.

The previously described counting procedure may
be generalized in the following manner. After m
attempts to place dumbbells on systems of linear
arrays of compartments, there will be g(m, N)
dumbbells on N(N — 1)™ sites; thus, after the mth
attempt, we may write

2q(m, N) + Ny(m, N) = NN - 1), (D)
where N,(m, N)is the number of vacant compartments
after the mth attempt. Dividing Eq. (1) by N(¥N — 1)™
and defining (6) = 2¢g(m, N)/N(N — 1)", we may
write

N,(m, N)
LS NN, @
N(N — )™ Elp slm: ),

where N,(m, N) is the number of p-tuple contiguous

R. B. McQUISTAN AND D. LICHTMAN

vacant compartments; the sum extends to the largest
value of p, i.e., N — 2.

To determine N, (m, N) we observe that after m
attempts each (N — s)-tuple contiguous vacancy will
lead in the next generation to the following:

s (N — s)-tuple contiguous vacant sites (cvs),
0 (N — s — 1)-tuple (cvs),
2 (N — s — 2)-tuple (cvs),

2 2-tuple (cvs),
2 1-tuple (cvs) (isolated sites).

This leads to a recursion relation

Nm N]=(N—p—-2)N,(m—1,N)
N—2

+ 2> Nym — 1, N)
e N-3
~2Nyu(m — 1L,N) Y 6,5, p<N -2,
h=1

(3)
where J,, is the Kronecker delta and where N, (1, N) =
2. If this expression [Eq. (3)] is utilized in Eq. 2 to
calculate N,(m, N), we obtain (see Appendix A)

N-2
Ny(m, N) = 3 pN,(m, N)
N-2
=(N—1)Y pN,(m — 1, N)
p=1
N-2
—23 (P~ DNym — 1L, N). (4

If Eq. (3) is used again in Eq. (4), it yields
N=2
2. PN,(m, N)
p=1

= (N — 1)21\72—:2pr(171 —-2,N)
»= N—2
—=2[(N —1)+ (N —2)] 2_2(1’ — )N, (m — 2, N)

N—-2
+ 2? ;(p — 2)N,(m — 2, N). )

The repeated use of Eq. (3) in resulting equations r times yields

N-2 N—2
2 pN,(m, N) = (N — 1) 3 pN,(m — 1, N)
p=1 p=

—AN =P+ (N =1 AN =2)+ (N = 1y (N =2 -+~
(V= DOV =27+ (Y = 273 (0 = DNym = 7, )

4+ 22N — 1 (N — 3N — 2)(N = 3)° + (N — 1 (N — 2N — 3) + -+
FWN =DV =2 (N =3+ (N =2 "+
+ (N — DN = 2"(N =372+ (N = DN — 2'(N — 3 + (N — 3y
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XNEZ(P — N, (m —r, N)+ -

p=3
N-2

= (N — 1)7{ Zpr(m —~rN)
—~2
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HFEHE A ze - omen = rm

N—1 N—-1

ny1=0

-2 2 r—2 N_2n11'—2——n1
N [ o

__2 ki~ r—k N — 2 ny r—k—ny

N

xdw—mmm—nm+~

p=k+1
Examination of the coefficient of
N-2
2 (p— k)N (m —r,N)
p=k+1
reveals it to be (see Appendix B)
=& (N ~1 —j)'
(=D)L G ——— ).
PP ] v
Thus Eq. (6) may be written

N.(m, N) = (N — 1)*{1\53 =27 OC(N—"—I—“—’)

= kA N —1
N—2
xz@—mmm—nm}a)
p=k+1

If r takes on the value m — 1, Eq. (7) becomes
N,(m, N)

SRR Pl [y

Therefore, the average coverage (0(m, N)), after m
attempts to place a dumbbell on a linear array of N
compartments, is given by [see Eq. (2)]

(B(m, N) N
— 3 (=2 - —2—k
- ()25 () )
<Seme (L o

In order to treat 0 for large N as a function of time,
we note that m, the number of times that an array of
N compartments is struck by dumbbells, is given by

m = Nvt,

where » is the striking frequency per unit compartment
per unit time and ¢ is time. Thus the last factor in Eq.

=2

(N—3"2_.
v

. } (6)

(=TS -omim =+

N-—-1

p=3

rk—myi—Ne MR-l /N~ 1\"E
e eyl
np=0 N - 1

(9) becomes
)
N—-1
- (=) (R
s —1 ~ Nvt
- (=) =0
S (R

As N tends to infinity, this becomes

exp [—jvi].
The last sum in Eq. 9 therefore yields

k
Zo(‘“l)jkcj exp [~jvt] = {1 — exp [—ut]}¥, (11)
so that Eq. (9) becomes

b0 =1 =3 =2 {1 — exp [l

k=

=1—exp{-2(1 —exp(—w]}. (12)

Figure 3 shows 6 as a function of time as given by
Eq. (12.) For comparison (6(m, 10)), according to
Eq. (9), is also shown in this figure. At = oo,
0 =1 —e2 thus, if dumbbells are placed in a
random manner on an infinite array of compartments,
after a long time 13.5%; of the compartments will be
isolated and vacant.
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APPENDIX A

N-—2

Ny(m,N) = ZpN,,(m N),

where
N,(m,N) = (N ~ p— 2)N,(m — 1, N)
N-2
+23 Nym —1,N)
h=p

AND D. LICHTMAN

Thus
N—-2
Nv(m, N) = EP(N hll s 2)Np(m - 1’ N)
=1
N-2 N-2
p=1 h=p
N-2 N-3
- 22 me—H(m -1, N)z 62771
p=1 h=1
N-2
=2 PN — p = DN,(m — 1, N)
=
N-2
+2 le(P + DYNy(m — 1, N)
p=
N-2

—22(p—' I)Np(m - 15N)

N—2
= (N — 1)2 pN,(m —1,N)

N--2

—23 (p — DN,(m — 1, N).
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The infinite multichannel-scattering process of the two-particle scattering of mesons of arbitrary isospin
off an isospin-} target, inelastic two-particle channels being admitted, is considered in the static limit,
The restrictions on the § matrix arising from crossing under SU(2) and two-particle unitarity are express-
ed in terms of three equations alone in the limit of degenerate meson masses. These equations are solved
by a perturbative technique, the expansion parameter being a measure of the strength of the inelastic
scattering. The principal result of this paper is that the inefastic amplitudes are all related, so that if one
is zero all must be zero. Comparisons are made with strong-coupling theory, which also requires an

infinite number of channels,

1. INTRODUCTION

One of the most challenging problems in strong-
interaction physics is the interplay between the
restrictions imposed upon scattering amplitudes by
invariance requirements under an internal-symmetry
group and the constraints of unitarity. The principal
difficulty in constructing even a simple dynamical
model incorporating both constraints is that the
admission of inelastic-scattering processes forces us
to treat an infinite number of scattering channels.
This difficulty is circumvented in the work of Cushing,!
who has solved a model which is an abstraction of the
pion-nucleon system with two-body unitarity, with
mw, NN, and wN elastic-scattering amplitudes, as the
inelasticity here arises in the annihilation channels of
the #N elastic-scattering process. However, when
inelastic-scattering processes are permitted, the prob-
lem of dealing with an infinite-dimensional § matrix
arises immediately. In this paper we consider such a
model, namely, that of the scattering of pseudoscalar
mesons of isospin A4 off spinless “nucleons” in a
p-wave static approximation, taking into account
two-particle unitarity. The two I =14 § elastic
amplitudes for the scattering A+ 4 -—>21+} are
related by crossing under SU(2), while the amplitude
in the I = A + } channel is linked to the I = A 4 }
amplitude for the elastic scattering of a meson of
isospin 4 4+ 1 off a “nucleon” through the single
inelastic amplitude

A+3—->@A+D+3

by the requirements of unitarity. Since there is no
a priori reason for setting any of the inelastic ampli-
tudes equal to zero, there is no terminal value of 1
and the $ matrix is infinite-dimensional. The equations
become uncoupled only when all the inelastic ampli-
tudes vanish, and the solutions of this two-channel

1 J. T. Cushing, Phys. Rev. 148, 1558 (1966).

problem are known and extensively discussed in the
literature.?—4

In other words, this model shows that the usual
approximation of truncation of multichannel dynamics
to a finite number of coupled channels is not mathe-
matically legitimate: if one inelastic amplitude is
permitted to be nonzero, an infinitude of inelastic
channels are also nonvanishing. In some respects this
result is analogous to those of Aks® and Cheung and
Toll® on the impossibility of vanishing production
amplitudes in a nontrivial collision process.

The model also bears some resemblance to the
results of Geobel’s strong-coupling theory,? which also
demands an infinite set of particles with scattering
amplitudes determined in an effective-range approxi-
mation. In so far as we treat two-particle unitarity
exactly, our model is more sophisticated than Goebel’s,
although we are compelied to simplify it in other
directions—for example, by ignoring spin. It is also
interesting to compare Cushing’s work! with the
extensions of strong-coupling theory proposed by
Kuriyan and Sudarshan.® Both have solutions for a
finite number of channels, and the common ingredient
is the inclusion of #~channel processes.

2. MULTICHANNEL UNITARITY
AND CROSSING

As we mentioned in the Introduction, the choice of
an appropriate notation is crucial for the solution of
our model. We define the S-matrix elements for the

(1926% W. Martin and W. D. McGlinn, Phys. Rev. 136, B1515

3 J. Rothleitner, Zeits.Phys. 177, 287 (1964).

4 V. A, Meshcheryakov, Phys. Letters 24B, 63 (1967).

5 8. 0. Aks, J. Math. Phys. 6, 516 (1965).

¢F. F. K. Cheung and J. S. Toll, Phys. Rev. 166, 1072 (1967).

?C. J. Goebel, Proceedings of Dubna Conference 1962 (un-
published); C. J. Goebel, T. Cook, and B. Sakita, Phys. Rev.
Letters 15, 35 (1965).

8J. Kuriyan and E. C. G. Sudarshan, Phys. Letters 21, 106
(1966); J. Kuriyan and E. C. (. Sudarshan, ibid. 16, 825 (1966).
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elastic process

AtioA+d (1a)

describing the elastic scattering of a meson, of isospin
2, off a nucleon, by SH(A(X + 1), w), where F refer
to the channels with total isospin A, respectively, o
is the s-channel energy in the static limit (fixed target),
and we have chosen to label § according to the
Casimir operator of SU(2), rather than 2 itself, for
reasons which will become apparent later. We describe
the inelastic S-matrix element for the process

Ati->@A+D+ 13 (1b)

by S((A + 1), w). This process occurs entirely in the
I = (A4 3) channel. The matrix elements Si(w),
S(w) satisfy the following analyticity requirements:

(a) Sx(w), S(w) are meromorphic functions of
in the complex w-plane cut along the real axis from
—o<w< —~land1l < w < w;

(b) Hermitian analyticity, S%(w) = S¢(w*):

$*(w) = S(0%);

(c) Crossing symmetry, S(—w) = S(w):

S (A + 1), —w) = CyySp(A(2 + 1), w)

(0(, ﬂ = > +)9
with

c 1 (—1 2(/1+1))_
* o4+ 1\ 22 1 ’

(d) Two-particle unitarity:

1S, + 1), o) + ISA + L w)) =1,
wreal > 1,
S, (A2 + 1), ®)S* (2 + 1, »)
+S*O+ DA +2), 0)SA+1,0)=0
wreal > 1;

(¢) Pole structure: Sz(A(4 + 1), w) possesses pole
terms arising from the “nucleon” isobars N, ;;
S(A 4 1, w) does not possess a pole in the limit of a
degenerate isobaric spectrum.

As may be seen from the equations pertaining to
requirements (c) and (d), crossing relates different
isospin channels belonging to the same elastic process,
while unitarity relates different processes with a
common isospin channel. Thus the set of equations
does not terminate, as there is no a priori reason for
taking any of the S(2, ) as zero. Our task in disen-
tangling the equations is facilitated by Wanders’s
trick? of decomposing the elastic-matrix elements into

9 G. Wanders, Nuovo Cimento 23, 8§17 (1962).
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symmetric and antisymmetric parts. Let

S (A +1),w) =
AL + 1), o) [BAA + 1), 0) — 2 — 1],

S A4 + 1), w) =

AGZ + 1), @)[BAG + 1), @) + 1], (2)

where 4 and B are antisymmetric functions of w; then
the crossing relation given in (c) is automatically
satisfied. We note in passing that, under the trans-
formation A — —(4 4 1), S_and S, are interchanged,
while C,z — Cg,; thus crossing is maintained. This is
the reason for the choice of labeling according to
(A 4+ 1) rather than 1 itself. The unitarity equations
then become

[AGA(A + 1), )*|B(AGA + 1), ) + A
+ISA+ 1L, wP=1, (3)
AGG + 1), 0)[BAG + 1), ) + S0, + 1, »)
+ A%(A + DA + 2), w)
X [B(A+ DA+ 2, 0) — i —=2[
S+ 1, ) = 0. (4

To ensure compatibility of (3) and (4) when 2 is
replaced by —4 — 2, we require that

S(—A+1),0)=+£54+ 1, w). *

The problem of handling the incorporation of in-
elastic effects becomes one of notation; we succeed in
reducing the coupled equations for the infinite-
dimensional § matrix to three at the price of the rather
drastic imposition of complete degeneracy of the
meson spectrum; i.e., all the mesons in the theory,
whatever their isospin, have the same mass, taken here
as unity, so that all the two-particle unitarity thresholds
coincide. Starting from the known solutions,?3 where
there is no inelasticity, a solution of these equations,
incorporating inelasticity, is found as a perturbation
series in a parameter ¢ which determines the strength
of a typical inelastic coupling. The chief consequence
of this model is that the inelasticities cannot be
arbitrarily assigned; and this implies that all the
meson-nucleon isobar-coupling constants in the
model bear some definite relationship to one another.
Equations (3)-(5), for w real > 1, together with the
symmetry requirements on 4 and B (and S) as
functions of w, are the basic equations of the theory.
An exact solution is known when S = 0%3; in its
basic form, it is determined by the equation

Re By(A(4 + 1), ) = 4, ©
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which gives
By(A(A + 1), w) = } + < log (0 + [0® — 11}
ki

+ i(w? — Dig(w), (1)

where g(w) is an arbitrary meromorphic antisymmetric
function of w, and the subscript zero is used to
indicate the solution with .§ = 0. Note that in this
case B, has no explicit dependence on A. The corre-
sponding function 4, is determined from the recurrence
relation

A2 + 1), 0)A((2 + 1) + 2), w)
- -1 S
-G+ D
with the initial condition A44(0, w) = 1/b, where we
have written b in place of By. In this form, it is not
evident that 4,(A(2 + 1), w)depends on 4 only through

the combination A(4 4 1); however, a power-series
solution indicates that 4, has the formal expansion

Ay(AM2 + 1), ®)

1, 12A+1)
— 1 ([2}.+1|+1)/2(_ TN T
(£D) ) + S
3BA+ 1) =220+ ,
8b° +

®

+ )(w>m

)
where now the dependence is explicit. The choice of
sign in (8) is arbitrary: this is reflected in the power
series (9), though the sign factor is only valid for
integral A with the second choice for (8). When § is
nonzero but small, we suppose it proportional to an
inelasticity parameter e, which is pure real or pure
imaginary according to the choice (F 1) for (8). To
first order in €, Egs. (4), (5), and the symmetry
requirements on .S give

ef (A
S(A, w) = B{L—%z ,
where f(4%) is an undetermined real function of A.
Writing Eq. (3) for A replaced by —4 — 1 and
eliminating the function 4(A(4 + 1), w), we have

BUGA+ 1), ) + 47 _ 1—IS(A+ 1), 0
[BOA + 1), w) — A — 1 1—[SG, o))

(10)

(11)
Setting
B((% + 1), w) = By(w) + [e|* By(A(A + 1), w)  (12)

and using (10), we find that the address of B; as a
function of w, together with the interchangeability of
A with —4 — 1, may be satisfied with the choice of
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f(3®) as (42 — D, giving

=b[b* — 24+ 1) — }]
& = B~ (A + 17
We do not know whether this choice for f(4%) is
unique; we do not expect so, but this choice does lead
to a particularly simple expression for B,. Finally we

use (3) again to determine A4, , the correction to order
|€|2 to Ag; this leads to the equation

A (A + 1), b) + 4,(A(A + 1), (1 — b))

_ _ B B(1—1b)

T b4+ 1l—b+4
G+12-1

—_ 2 24 (14)
[6* — (2 + D[ — b)*— (A + 1)]

B,((A + 1), 0) = (13)

where

AGZAZ + 1), b)
=AM + 1), DL + [e[* 4,2 + 1), b)) (15)

The solution of Eq. (14) may be expressed as follows:
A,((2 + 1), b)

= S(b) + Zj dxf dp a(p) sin (p — b)x tan%,
0 —a0

(16)
where S(&) and a(b) are even and odd parts of
_ By(b) 2b+1
b+ 4b*—(Gi+ DY’

This solution is derived and evaluated explicitly in the
Appendix.

This perturbative type of solution could, in principle,
be carried further, but one feature of the solution is
already clear, namely, that the relative magnitudes
of the permitted inelastic processes cannot be arbi-
trarily assigned, but are determined by (15). This
feature is ignored in the standard finite coupled-
channel calculations, where the potentially infinite
set of two-body coupled-scattering processes is
arbitrarily truncated. This conclusion could be
criticized on the grounds that it was derived with the
simplifying assumption of coincident unitarity thresh-
olds: for if indeed the meson spectrum may be
arbitrarily assigned, then we should be able to recover
the finite model by sending all the meson masses
except a finite number to infinity. However, if Goebel’s
theory? is any guide, not only are the meson isobar-
coupling ratios determined by the theory, but we can
expect the meson spectrum to be determined too.
Since we have only a perturbative solution, we cannot
complete our solution by fitting the pole terms in the
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S-matrix amplitudes [analyticity requirement (d)]
using the arbitrariness in the basic solutions (15) and
(16).2:3-%-11 This arbitrariness takes the form of two
meromorphic antisymmetric sets of functions

qgA(A + 1), w) and DA + 1), w),

the first set appearing in the general solution of Eq. (1),
the second as an arbitrary multiplicative factor in S
and S$*; i.e., given a solution S(4, w) and S, (A(4 + 1),
w), then D((}. — DA, @)D(AQA + 1), w)S(4, w) and
D*(A(A + 1), w)S+(A(A + 1), w) are also solutions
where each D is meromorphic, antisymmetric, and
unitary on the real axis. This procedure would yield
a connection between the meson isobar couplings
more subtle than that imposed by Goebel’s theory.
Unfortunately, at this stage in the development of
multichannel scattering with exact two-particle scatter-
ing, this program does not appear to be technically
feasible.

Note added in proof: In a recent paper by B. Sakita
(“Strong Coupling of Multipartial Wave Meson
Isotriplet,” unpublished University of Wisconsin
report), an exact solution of the Chew Low equation,
in the strong-coupling limit with an arbitrary crossing
matrix, is exhibited. This solution is an entirely even
function of the energy w and is obtained by mapping
the problem onto the w? plane.

ACKNOWLEDGMENT
P. O. G. Ehrhardt thanks Lancashire County
Council for the award of a Research Grant.
APPENDIX

We solve the equation
s(b) + s(1 — b) = f(b) + f(1 — b),

where s(b) is an even function of b and f(b) is arbitrary.
It is easy to see that it is sufficient to consider the case
where f(b) is odd, as a general f(b) may be split into
its symmetric and antisymmetric parts, and the symme-
tric part taken immediately to the left-hand side. If S(k)
and F(k) are the Fourier transforms of s and f,
respectively, Eq. (A1), upon transformation, becomes

(A2)

(A1)

SE)(1 + ) = Fl)(1 — &™),
where the parity of s and fis reflected in the coefficient
of the exponential in the above equation. This
equation may be immediately solved for S(k) and

10W. D. McGlinn and C. H. Albright, Nuovo Cimento 27,
834 (1962).

11 A, A. Cunningham, Nuovo Cimento 50, 535 (1967); A. A.
Cunningham, J. Math. Phys. 8, 716 (1967).
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inverted to give

sb) = - f f Ok an X2 ey dpak.  (A3)
27 J-0 J- 2

The oddness of f(p) may be exploited to show explicitly
that the solution is symmetric in b by the transforma-
tion to integrals over positive values of p and k:
sb) = 2 f f cos bk sin pktan-— f(p)dpdk. (Ad)
mTJo
The general solution of the homogeneous equation
for s(b) must be added to this solution: any S sym-
metric about both the origin and antisymmetric
about the point & = } will do; i.e.,

s(b) =Y a, cos 2n + 1)7b, (A5)

n=0

with a,, arbitrary coefficients, satisfies the homoge-
neous equation. The solution of Eq. (14) can then be
evaluated explicitly. Since we want a solution which is
a function of A(A + 1), we take the sum of (14) with
the equivalent equation with A replaced by —(4 + 1)

[the difference is automatically satisfied by our solution
of Eq. (11)]. For f(b) in Eq. (Al) this gives

7@ )—'[(biw (b—lar]

1 1 1
+§[<b—1—1)2—<b+z+1>2]
2 1 1 A+1)
+4(2}.+1){b+l b—).}+4(21+1)

1 1
X + . (A6
[(b+l+1) (b—/l—-l)} (A6)
By using the identity

itan (kp[2) = 1 — 2e~FP 4 2¢72kP . .. (—
+ (=1)re~"*?i tan (kp/2),

l)ne—‘nik;o
(A7)
the integrals in (A3) may be performed for the first

two brackets in (A6) to give the finite sum (4 being
taken as integral)

T 2)2\“ 31 )"<b+ e

). (A8)

- %((b -1 a7

_1( 1 + 1
s\b+ A4+ 1) (b—a—1)

A similar device may be used to compute the integral
for the last two brackets as an infinite series of poles,
which may be rearranged into the derivative of the
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logarithm of a product of Gamma functions. Alter-
natively, we can exploit the identity

Ap(A(A + 1), D)4, (AA + 1), (1 — b))
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Collecting together (A8), (A12), and the symmetric
parts of the right-hand side of (14), for the solution of
(14) we finally obtain

G+ANA-b+)=1. (A9) A (AA+1),b)
Differentiating with respect to 4, we have — _ 1 ( ) 9 G+ 1) 0 )
d d 424 + D\ 04 oA+ 1)
ﬁlog Ayb) + ‘—1—Alog A1 — b) % 1og AA(A + 1), b)
1 1 1 1 1
=0. (A10 —
+b+}»+1——b+/l (A10) +2(2)~+1)(b2—l2 b2—(11+1)2)
Now (d/d2) log Ay(b) is an even function of b; hence 1 ( 1 1
(d/dR) log Ay(b) + A/(b* — A%) is the solution of (Al) 8\(b + 2% (b — A)?
with 1 N 1
b i 1 1 + 2 2
~H Ay L] @an (b+l+1) (—1—1))
f) = 12 [b—l+b+l:| (ALL)
Thus, the solution for the second two terms in (A6) + 2 z( 1) ( b + )2 (A13)

may be written succintly as
y Y This completes the solution of Egs. (4), (11), and

1(—:1— 4 ﬁ—l————d—) log Ay(b) (14) in the main text. The arbitrariness in solution
4\@2A + 1)dd 224+ 1d(A + 1) of this type of equation [(AS)] is just that of the
+ 1 ( P G+ ) (A12) arbitrary phase factor D(w), as we are working to
424 + D\p* — 2® — A+ 1) order e2.
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1. INTRODUCTION

The main point on the realization of the Hilbert
space for the manifold of states of a relativistic
article through covariant equations is the apparent .
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(Ula, Ayp)p) = expia- p Q(p, Ayp(A(4™Mp), (L)

* A. S. Wightman, in Les Houches Lectures (Hermann & Cie.,
Paris, 1960). We follow in this section the notations used here.

We start with the following theorem®:

Theorem: Every continuous representation of ﬂ
(universal covering group of the restricted Poincaré
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where a is a translation, 4 belongs to the unimodular
group in two dimensions SL(2, C), and A(A) is the
restricted Lorentz transformation associated to it?
(the connection between the occurring groups can be
seen in the Appendix).

The Q factors, which can depend on the particular
point p, satisfy the conditions

Q(p, ADQA(41)p, 45) = O(p, 4,4,), (1.2a)
op, =1, (1.2b)

which show that the Q(p, 4) which operate in the
“internal” variable of y constitute a sort of representa-
tion of SL(2, C).

As usual, two representations are equivalent if

Uy(a, A) = VUy(a, AV (1.3)

Without loss of generality,! we can take U,(a, I) =
Us(a, I); then, if

(V9)(p) = V(py(p) (local operator), (1.4)
it is easily seen that
0:(p, A) = V(p)Qi(p, AV (A4 p). (1.5)

If A belongs to the little group L, of k [4 € L, if
A(A)k = k,] Eq. (1.5) is the expression of the equiv-
alence of two representations of it; namely,

Ou(k, A) = V(K)Qo(k, AV (k)™ (1.6)
Q, is then a representation of the unitary unimodular
group SU(2, C), which is the little group of a p such
that p? > 0.

It is known! that there is a F(p) which verifies
(1.5) for every p of an orbit and every 4 € SL(2, C)
if and only if there is a V' (k) which verifies (1.6) for
only a k and any 4 € L. In fact, given a representa-
tion Q, of the little group of a vector k, Q(p, 4) is
determined by the relation

Q(p, A) = Ok, A;L) 70k, A;L AA, YOk, A ),
(L.7)

where A4, _; is a standard transformation which
verifies

A(Azu—k)k = P,
and where
AL AA, = AreLl, and AAHp=1p.
(1.7) can be written, taking into account (1.2) in
the form
0@, A) = Q(p, 4,000k, 4)QQ', Ay )7 (1.8)

2 The homomorphism A4 — A(A4) is between SL(2, C) and the
restricted Lorentz group L]; see the Appendix. See also Ref. I or
A. J. Macfarlane, J. Math. Phys. 3, 1116 (1962).
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Distinct Q(p, A) are obtained from distinct
Q(p, A,. 1), and it is natural to define the canonical
representation® by taking Q(p, 4,. ;) = I for it. Then,

O(p, A) = Qo(k, 4),

and in that case
(Uy(a, A)g)(p) = expia- p Qo(k, A)p(A(4V)p), (1.9)

and (1.8) shows the equivalence between the two
representations with

V(P) = Q(P, Apei)-
We note that the irreducibility of the representation

is not necessary for the preceding reasonings.

2. EQUIVALENCE BETWEEN DIFFERENT
THEORIES AND SCALAR PRODUCT

Let ¢ be the generic vector of the Hilbert-space
support of the canonical realization and g that
corresponding to another realization of the same
class. Then, restricting ourselves to the elements of
SL(2, C), we have

UADe)(p) = Qop @),
U = V)2V ('Y ("),
Q(p, 4) = V(P)QV (')

We define the ordinary scalar product in ¢ space:

(| o) = f o) ¢(p) dQ,,

(2.12)

(2.1b)
where

(2.2)

where df2,, is the well-known invariant measure
dp, dp, dpsf|p,] on the mass hyperboloid €2, . This
scalar product is positive-definite and invariant, as
is evident.

We want to show now that it is possible to establish
the equivalence between the theories provided by ¢
and y by means of an isometric and covariant applica-
tion, which is ¥(p), and the corresponding invariant
scalar product in y space.

To see this, we make the correspondence

yv(p) = V(p)e(p), (2.3)

which is covariant, as is shown by the following
commutative diagram:

#(p) = V() 'o(0) 25 0up(p) = 0oV () 9(p)

lV(p) lV(y)

¥(p) 2 V)0V (1) w(p).

3 E. P. Wigner, Ann. Math. 40, 149 (1939). Another realization
which considers the tensor product of the representation (m, 0)
and the D(s, 0) representation of the homogeneous Lorentz group
has been given by R. Shaw [Nuovo Cimento 33, 1074 (1964)].
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[In fact, it may be seen directly because
U(4) = Q(p, AP(A) = V(p)Q,V(p')'P(4)
= V(p)QoP(A)V(p)~,
the action of P(A4) being reduced to change p by p’ =
A(4™p.]
We take now the scalar product in o space in the
way

(| y) = f w0 p(P)p(p) dQ,..  (24a)

p(p) = V() V() (2.4b)
This scalar product is again clearly covariant and
positive-definite [see (2.1b); V¥T and V-1V are
nonnegative-definite operators]. Then, the p space
being endowed with the above metric, we have shown
the equivalence between the theories constructed over
these spaces.

3. THE DIRAC EQUATION

We now apply the preceding considerations to the
representation of 1 provided by the Dirac equation
in order to obtain the relation existent between it and
the corresponding canonical realization.

As it is well known, the four-spiriors solution of the
Dirac equation

(v(p) — myyp(p) =0
take values on the two sheets of Q,,, corresponding to
the two signs of the energy; this is, in fact, a general
feature of the solutions of the manifestly local co-
variant equations. The »’s form a support space of a
representation of §1, which is defined in the following
way:
(Ula, A)p)(p) = expia - p S(A)p(A(A™)p),

PeEQ,, G

the S(4) being four-squared matrices satisfying
S(Ay(P)S(A)~ = y(A(4)p).

We take the 9’s in a representation in which »° is
diagonal, 9" = 4% and »' = —pi, i=1, 2, 3;
y®) = vp° ~2v'p.

Let us reduce the representation (3.1) to the
canonical form. We have to use the little group of
k = (em,0,0,0), € being £1 for pe Q. As we
know, every A can be written in the form

A= Am*—k(A;‘l—kAAp'ﬁ—k)A;'lc—kx
the bracket belonging to L, and hence to SU(2, C)

[universal covering group of SO(3, R)]. Then the
following relation holds:

5(4) = S(A4,-)S(4)S(4;' ).

(3.2)

(3.3)
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S(4,) is a representation of SU(2, C); then, according
to (1.5), the equivalence between the two realizations
is brought about by taking

S(4,.0 = V(p).

It is not difficult to find the corresponding form of
V(p) and ¥(p)~*, which can be written as

V) = L@ Fem
Rem(em + p)IF
Yyt = 2@t m
[2em(em + pO)?
Since the points (em, 0, 0, 0) enable us to reach
only points p belonging to Q. under the action of

SL(2, C), the € is to be taken + or — according to
peQiorpeQ;.

(3.4)

Let us apply the obtained transformation to the
Dirac spinors. We have

o(p) = V(p)p(p) (3.5a)

and (peQ,)
Vp) ' (r(p) — mV(p) = (emy® — m). (3.5b)

Taking into account the diagonal form of 9°, Egs.
(3.5) show that ¢(p) has only the two upper compo-
nents different from zero if p € QF | and the two lower
ones if peQ_. Then the ¢(p), with peQ,,, de-
compose in the sum of two ¢,(p), i = 1, 2, each of
them having support in a different sheet of Q,, and
corresponding to a definite sign of the energy. In fact,
we have shown explicitly the equivalence of the
representation J 1; provided by the Dirac spinors with
the direct sum of the two irreducible representations
[m, %, +]and [m, }, —]. Of course, the representation
of SU2, C); acts only on ¢(p) it is not difficult to
show that S§(4,) decomposes in the direct sum
D} 4 Db of representations of SU(2,C). The
realization over the ¢ space has then the canonical
form (1.9).

The equation which gives rise to the canonical
realization can be obtained applying to the arbitrary
spinor (p) the transformation

Py + K
[2¢K(eK + P
which is obtained by considering the transformation
which brings the arbitrary vector p to the vector
(K, 0,0, 0), K being +(p2)’5 and therefore a number

for the corresponding mass shell. In this way, we
obtain

Vo(p) = e==1, peQ;, (3.6)

(cKy® — m)g(p) = 0. 3.7)

This equation decomposes, giving two analogous
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equations, each of them corresponding to a definite
sign of the energy, which can be written as

(K~ m)pi(p) = 0.

In fact, Eq. (3.7) is the Chakrabarti form of the Dirac
equation? and (3.6) is the Chakrabarti transformation.

The correspondence between the two realizations
is made by ¥(p); the new scalar product is

(p| o) = f #(0)' p(p) dQ,,

and is equal to

f v V) Vo () dQ,
= f ) y—y—,ff” () dQ,,

=e f w(P) Y y(p) dQ,,,

which is the usual scalar product for the Dirac
equation.

4. THE PROCA EQUATIONS

As it is well known, the Proca equations in momen-
tum space read

(7* — mp(p) = 0, (4.12)
> 9(p) =0, (4.1b)

the y(p) being a vector-valued function on €,, (4.12)
and tangent to it (4.1b); (,) is the usual Lorentz
scalar product. The Proca equations describe massive
particles of spin § = 1, the corresponding representa-

tion of 31 being defined by

(U(a, A)y)(p) = exp ia* p A(A)yp(A(47)p). (4.2)
A(4) is the natural representation of Ll in the
Minkowski space.

Let us reduce (4.2) to the canonical form. We have
to consider the standard element A;_,, which brings
the generic vector p to the point (em, 0, 0, 0). In this
representation, A,,_, has the explicit form

P _P _P _Ds
€m €Em €Em

_n 1+A 1Pz PiP3

em L1 L1 1]
Akd—p= 2 b

_P mh P Pl

em [ ] 1 1]

_Ps PP PPy g D

€Em

where [ ] = em(em + p,).

4 A. Chakrabarti, J. Math. Phys. 4, 1215 (1963).
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The new functions are taken as

(K +

#(p) = "™ (Age)v(0):
m

and taking into account that
0= (P’ '/’(P)) = (Ak«yps Ak@pW(P))’

it appears evident that they have only three nonzero
components. The canonical representation is then
defined by

(U(a, A)g)(p) = exp ia - p D(A(4)p(A(47Y)p),
4.4)

A(4;) being a rotation which leaves invariant the
vector (em, 0, 0, 0) and which operates in the space
tangentto Q_atk. A

Operating in a similar form as we did in the Dirac
case, the canonical form of the Proca equations is
found to be

(K — m)g(p) =0,
(k, 9(p)) =0,

(4.52)
(4.5b)

and again we have that the positive definite product

W]y =— f w®), v(p) dQ,,

is equal to

@] = f o) o(p) dQ,n,
since

—(¢(p)', e(p) = #(p)'p(p).

5. BARGMANN-WIGNER EQUATIONS

We consider now the Bargmann-Wigner (B-W)
equations for massive particles of any spin.® As is
known, the B-W equations for nonzero mass particles
can be written as a set of n = 2s (s = spin) equations
of the form

@E)" —my(p, & - &.- - £)=0, (51)

v being a symmetric function of the n four-valued
spin variables &, , having in all 2 (25 + 1) independent
components because they describe particles with a
unique spin, but they include the two signs of the
energy. ¥(p)!" acts on the variable &,; if n =1, we
have the Dirac equation.

If we consider p as an element of the 42°-dimensional
space obtained by taking the tensor product of the 2s
four-dimensional spaces, y(p)” can be written in the

5 V. Bargmann and E. P. Wigner, Proc. Natl. Acad. Sci. U.S. 34,
211 (1948).
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form
PN =10 Qype---el

the factor y(p) being placed in the rth position.
Following a procedure analogous to that used in
the Dirac case, we define, with ¥(p) given by (3.4),

Vo) =1@---oVp e --ol, (52

and we obtain

(V(p)(r))—ly(p)(r) V(p)(r) = emyO(r)‘

Moreover, taking in account the following property
of the Kronecker product of matrices,

(D;®Dy " ®@D,)D1® Dy ® Dy)
= (D,D{® D,D;® - ® D,D,),

it is obvious that V(p)" commutes with V(p)"".
Then, if

Bo) =TT V("™

it is evident that

B(o)'((p)" — m)B(p) = emy*™ — m.

Then the functions ¢(p, &, -+ £,), which come from
the y(p, & - §,) solution of (5.1), take values on
QF for & = 1,2 and on Q, for £, = 3, 4, being zero
for the other values in each case. There are

(2s+2—1

=25+ 1
W)=

independent components for each sign of the energy,
and the corresponding spaces are support of the
representation D* of SU(2, C), as corresponds to the
canonical realization.

The form of the equations (5.1) analogous to the
form (3.7) for the Dirac equation can be obtained in a
similar way. We put®

25
A(p) = I__{ Vo(p)™, (5-3)
with Vo(p) given by (3.6); applying this trans-
formation, we obtain the B-W equations in the form
® A similar procedure to that given here has been used by Pursey

to generalize the Foldy-Wouthuysen transformation [D. L. Pursey,
Nucl. Phys. 83, 174 (1964).

1693

(¢ = A7y):

(eKy*™ — m)p(p, &+ §,) = 0. 5.4
Equations (5.4) give rise to two analogous sets of
equations, each of them for a sign of the energy whose
solutions are support of the D* representation of
SU(2, C) as stated.

We consider now the equivalence between the
theories provided by (5.1) and (5.4). In ¢ space the
scalar product is

@)o = f O(p & EP(p &y e £,) AQ;

it is positive-definite and equal to

(w|w
- f w0, & - £) BB (p, & - -1 £,) D,

=fwTey° ® - ®ey’ypdQ,,.

€ n factors —
Finally, it is interesting to note that the existence of the
e factor is only necessary for half-integer spin (in that
case, n is odd); for integer spin it is irrelevant. This is
on the basis of the spin-statistics theorem of Pauli.
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APPENDIX

The relations between the groups 1, 91, SL(2, C),
and L] can be easily seen in the following diagram of
exact sequences:

1

l

Z,

l
SL2,C)=1

! t

L+ 2 1

{

1

Z, is the group of two elements, Tr is the group of

translations. The diagram shows that T1(F1) is the
semidirect product of SL(2, C)(L!) and Tr.

1e— N =
(-]

n

rd

[

1—->Tr—

1> Tr—

»—A(——ﬁf—
N
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_ Maxwell’s equations of classical electrodynamics are solved in the framework of the curved space-
time of the Friedmann universes. Explicit formulas are given for the retarded and advanced fields in terms

of the four-current.

1. INTRODUCTION

This paper treats Maxwell’s equations of classical
electrodynamics® in the framework of the curved
space-time of the Friedmann universes.? Retarded
and advanced solutions are found and stated explicitly.
The metric and Maxwell’s equations are introduced in
Sec. 2. The solutions are given in Sec. 9.

We write the Friedmann metric in a form that makes
it the conformal transform of a static homogeneous
metric. Since Maxwell’s equations are conformal-
invariant, it is then enough to solve them in the static
homogeneous case. We treat the spherical (closed),
flat, and hyperbolic (open) cases simultaneously. (The
static homogeneous universe in the flat case is, of
course, an ordinary Minkowski space. We carry it
along for completeness and comparison.)

In the spherical (closed) case, the total charge in
the universe must vanish and no solution exists for
just a single charge. In Sec. 10 we show that the solu-
tion we have obtained does in fact correspond in this
case to a pair of oppositely charged particles. The
“countercharge” appears at the diametrically opposite
point of space at the advanced or retarded time and is
surrounded by the opposite kind of field (in the sense
of retarded or advanced). In Sec. 11 we show how it
is possible to superimpose solutions of this kind to
obtain the field of a pair of oppositely charged
particles following arbitrarily prescribed world lines
and with independent choice of retarded or advanced
field for either particle.

We use Greek indices that range from 0 to 3, and
Latin indices that range from 1 to 3. The summation
convention is used. The symbol |x| stands for
(M2 + (x%2 + (x%)®)}. This quantity is also denoted
by r. This r is quite distinct from r that appears as a
component index (as in x7).

* Supported in part by the U.S. Atomic Energy Commission
under contract A.T.(45-1)1388, program B.

t Present address: The Weizmann Institute, Rehovoth, Israel.

1). Landau and E. Lifshitz, The Classical Theory of Fields
(Addison-Wesley Publishing Co., Reading, Mass., 1959), p. 272.

2 A. Friedmann, Z. Physik 10, 377 (1922); 21, 326 (1924). See also
Ref. 1, p. 336.

2. MAXWELL’S EQUATIONS IN A
FRIEDMANN UNIVERSE

We propose to solve Maxwell’s equations

) , 4
(-9 H{(—plgvg"F,,}, = —c;—T JE @)
Fuo+ Foput+ Fppy=0 2.2

in a Friedmann universe. The commas in the last
equations denote ordinary derivatives. We write the
metric of the Friedmann universe in the form

] dx® + dy* 4 dz*®
ds? = [f(OPl? df* — =TT 21 (23
& = [fOPc o } 23)
where r = (x? 4 y2 4 z2)% and
SO =1 + «(*4a?), 2.4)

with « being +1, —1, or 0. The function f(¢) is given

by
1 — cos (¢tfa), when k=1,
Sy = {(#t)% when « =0,
cosh (ctfa) — 1, when k= —1. (2.5)

The Friedmann line element is often stated in terms
of a different time coordinate r related to ¢ by
dr = f(t)dt. (2.6)
The line element then has the form ds® = c? dr® —
(f]1S)*(dx?® + dy? + dz?). A standard clock comoving
with the space coordinates measures ». However, the
use of 7 has the advantage that the line element of Eq.
(2.3) appears as a conformally transformed line
element of a static homogeneous universe. Since the
Maxwell equations are conformal-invariant, it suffices
to solve them in the static homogeneous case.
From now on and in the following sections we
disregard Eq. (2.5) and put

fH=1 2.7
in Eq. (2.3).

The static homogeneous universe is of cylindrical
nature: it is the direct product of a one-dimensional
space (time) by a three-dimensional homogeneous

space (space). It therefore makes sense to separate space
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indices from time indices and use the tensor properties
of the various quantities under transformations of the
space coordinates only.

When Egs. (2.3) and (2.7) are substituted into Egs.
(2.1) and (2.2) and the latter are separated into space
components (denoted by Latin indices) and time
components (denoted by the index 0), we find

—~ (Fy[cS) s = 4nJ%cS3,  (2.8)
—(F,ocS) o + (¢SF,) , = dnJr[cS3,  (2.9)
Fro t Fors — Foor =0, (2.10)
Fri+ For + Fops = 0. (2.11)

These are the equations we set out to solve.

3. RETARDED AND ADVANCED SOLUTIONS

For the case « =0, the static homogeneous
universe is an ordinary Minkowski universe, and the
well-known retarded and advanced solutions of
Liénard and Wiechert® apply. Guided by analogy

IN FRIEDMANN UNIVERSES 1695

with this case, we search in the general case for
retarded and advanced solutions of the form

d
F‘”(X, t) =fd3y{Guva(xa Y)Ja (y, t :F 'f)

d
+ H,,(x, y)J’”,o(y, tF —;—’)} 3.1

In the last term J° ; was omitted as it can be expressed
in terms of J”, and J7 ,, through the continuity equa-
tion. The d,(y is the metric distance between x and y
in the three-dimensional homogeneous space.*

In the Minkowski case (k = 0), because of trans-
lation invariance, the Green’s functions G and H
depend only on y — Xx. In the other cases this is no
longer true. Still, G and H do not depend on x and y
separately. Our first task isto find just how they depend
on x and y.

In the curved homogeneous spaces, the role of
translations is played by the coordinate transformation

_(z=b)(1 + «xz-b/4a®) + (2" — z - b)(xb/4a®) + (b* —z- b)(Kz/4a2)

b =

which leaves the form of the metric invariant, but
turns the point b into the origin of space coordinates.
[Dot products in Eq. (3.2) are Euclidean: z-b =
zb, + z,b, + z,b,.] Rather than evaluate F,, at x,
we may translate X to the origin, compute F,, at the
origin in the new coordinates, and transform back.
This yields® (the field and current in the new coordi-
nate system are denoted £, J)

F (%, 1) = (0x2[0x*)(0x5/0x") F,4(0, 1)
= (9x%[0x*)(0xox")

X fdsyleam(O, v I (yx, t¥ @)
[4

z d
+ Haﬂy(()) Y)()Jy (yx » U F xy)}
[+

dy

= (3x2/ax")(@x/ox") f d'y | det 22

d,
x {Ga,j,,(o, ¥ @y20y")° (y, (¥ 7’)

+ Hap,(0, )(@V200y7)) d(y’ A )}

(3.3)
In the last equation we have used
dxy = d()yx . (34)

3 A. Lienard, L’eclairage electrique 16, 5, 53, 106 (1898); E.
Wiechert, Archives Neerland (2) 5, 549 (1900); Ann. Phys. (N.Y.)
4, 676 (1901). See also Ref. 1, p. 174.

1 + xz - b/2a® + «*(2*[4a®)(b?/4a®)

(3.2)

The four-dimensional x, in Eq. (3.3) stands for (x,, ¢)
and we have

Oxplox™ = 0x5/0x° = 6,,. (3.5)
The expression dxZ/dx* is defined by
Ox3[ox* = [0x}/0x"]p—x (3.6)
and it turns out that
0x%/0x" = 0,,/S(|x]), (3.7

where |x| is the Euclidean length of x. The determinant
of the transformation is

0x S(ixpl) |2
(% _ ) (%)) 68

ox | S(]x])

Thus, upon comparing Eq. (3.3) with Eq. (3.1)
[and substituting Eqs. (3.5), (3.7), and (3.8)], we find

1
GOra H Or X s 3
ooy = S(I ) ”(y)ay sayp: O
1 - oy’
Grsa » = Grs X. —= . 3.10
¥ = is0xnE Y 5y isqynp . OO

* We always take dxy as the shortest distance between x and y.
In the closed case x and y are connected by an infinite number of
geodesics that wrap around the spherical space many times (as well
as by two that go around less than once). The length of aty of these
geodesics could be used to construct retarded or advanced fields.
We restrict ourselves to the shortest. Solutions based on the others
may be recovered from ours by superposition (see Sec. 11).

® This transformation affects only space indices. Time components
are scalar under this transformation and so is the operator of
differentiation with respect to the time.
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ay? 1
Hg, (X, H,, (¥« , 3.11
9 = S(l l) ) o isar &
oy! 1
Hrap s = rgq x I —— 3.12
) [S(IXI)F Ll 3 S sar &2

For « = 0, these equations reduce to dependence on
the difference of x and y.
4. CHARGED PARTICLE AS THE SOURCE

We now consider J* to be the current corresponding
to a particle carrying one unit of charge and following
a world line given parametrically as

y* = n%). “.1)

We choose the parameter 7 to be the proper time of the
particle (in the static homogeneous universe), so that

gupti" = C". 4.2

Dots denote differentiations with respect to 7. The
current is

JHy, ) = f dr POy — (Ot — PE)IS(DIE.
(4.3)

We next substitute this current into the integrals
that appear in the expressions for the field F,,. We
find

Fo(x,1) = gﬁl—)
de=Gm(nx) UK (i F — o)
+ Hond 55305 (15 520~ )
(4.4)
Fulss) =
f df{ () 5 a"‘ 70 (t F G n“)
+ Houln) 5 a”‘ (1% b _ )}

(4.5)

In the last equations, d7f/dxn* stands for 9yf/dy*

taken fory = .

5. SOURCE IN THE VICINITY OF THE ORIGIN

We now assume [for a particular point of space—
time (x, #)] that at the time ¢ F d,,/c our particle was
(or will be) at the origin. That is, we assume that, for
that value of = for which 7*=1tF dx,,/c, we have

AMNON KATZ

n = 0. This assumption entails no sacrifice of

generality, since it can always be made true by an

appropriate choice of the origin of coordinates.
When v = 0,

(5.1)
This value may now be substituted for ,, except

where a derivative of  need be taken; in that case we
must keep ), to first order in 9:

7]x'.,=0 = =X

N = 0S(x|) — x + O(n?. (5:2)

When the fields of Eqs. (4.4) and (4.5) are sub-
stituted into Maxwell’s equations [(2.8) through
(2.11)], they are subject to derivatives with respect
to x and ¢, not 7. However, those terms that contain
J?, should be transformed into terms in J”, and J*
and the transformation involves taking a derivative
with respect to 7. Let us now perform this transforma-
tion explicitly:

dx
fd3y Gyvo(yx)-,o, (y’ t ‘-‘F n)

= f dr G, mS(x[) — X%’ (t F -dci" - n")

ettty
c on

GoonS(X]) — %) F f drl a"“ o

Ga(—2)?" (r £ _ n"). 5.3)
C

We have already put n = 0 in G in the last term. We

may also substitute

adnn/a),ly=0 = —'XHXI (54)

in the same term. In the first term an integration by
parts is called for, after which n = 0 may be sub-
stituted there too. When all this is done, we find

j d’y G,,vo(y,)ﬂ,o(y, t— g;‘—’)
= S(|x|)—a— -de Gmo(—x)é(t F G _ n°)
ifdr—-—— 2 Gnl(— x)a'( - ic— - n")- (5.5)

We have used the fact that 972/07° = d,, identically.

After v = 0 is substituted, we also find d%3/d%* = 6,
In conclusion to this section we therefore find that,

for our special choice of origin, the fields are (at x
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and ¢) 1 ) “ 0
Fol(x, ) = m{éo,,(—x)fdm a(: F2 )

d)

(5.6)
Foux, 1) = ES(—;‘IW {Gm<—x) f dr 7% (: = f’c— - n")

+ ﬁ,sp(—x)fd‘r nd' (t F dan _ 170).
c
.7

When these fields are substituted in Maxwell’s
equations [(2.8) through (2.11)], derivatives with
respect to x may be taken directly in Eqgs. (5.6) and
(5.7); derivatives with respect to ¢ are taken by putting
a prime on the ¢ function in Egs. (5.6) and (5.7) with
one exception: in terms involving %°0(f — dy.,/c — 7°)
we do not put a prime on the ¢ function to take the
time derivative of F,,; rather, we use Eq. (5.5).

+ By [ar 0 (17 dan _
[

6. FURTHER REDUCTION OF G AND H

The tensorial character of the various quantities
under space rotation and the antisymmetry of F,
may be used to reduce the number of unknown
functions in Eqgs. (5.6) and (5.7). Using these consider-
ations, we recast these equations as follows:

Fo(x,1) = S ){dT[A(r)n + C(r) =
+ M(r)-—r;— ﬁ’]é(z ¥ —c—" —~ n")
+ [ By + vy X

x & (t F %o _ n“)}, (6.1)
Fre 0 = [S(lr)P Je ( =)
[U(r)a( Fdn_y, )

+ V(o (: ¥ dT — ):' 6.2)

In the last equations r stands for [x|. In order to solve
our problem we havetofind 4, B, C, M, N, U, and ¥ as
functions of r. In the following we suppress the
dependence of the various functions on r and we
denote differentiation with respect to » by a prime.

We are now ready to substitute the F,, into Max-
well’s equations. Remember that whenever a time
derivative is indicated for the term containing C in Eq.
(6.1), the result is to be found in Eq. (5.5). We indicate
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it symbolically as

Cinoé’(t:!:fd_x_ﬂ_
r

n")

c

s e - Gplr

¥ r/r
C x'x* Y xn 0

:ES'—“‘;??‘S :F‘z‘ —n}. (6.3)
7. THE EQUATIONS

When Egs. (6.1) and (6.2) are substituted into

Maxwell’s equations and the rule (6.3) used, we find
the following. The left-hand side of Eq. (2.8) becomes

S |
=) ({55
xfdﬂ.;,a(t;ép __770)

B 2N _Clet At M
S exAx M
+s(5) +5(5) + 35 o
dxn B+ N
dr=-qd{t F = —
fT i (:F ):F cS*
def—'hé"(t$ﬂ—no)

VS]] el =)

(7.1)

The left-hand side of Eq. (2.9) becomes
Fyy
—(= SF, rs/,s
(cS ),o + ).

uy U C
= (Z) +=—==]¢
C{[(S) +rS rcES:] ”
_[(H)'_Q+£_Lx'x’
S rs  c*S cmS] r2}
xfdrﬁsa(tq:@'—n")
c
W "V A
+el|lz)]+=F= + d,
{[(S) rS c52 cS] :
VW_¥_U_C_ My
[(S) S:chz:F 352 232]
defﬁsé’ tq:—x'-'—-no)
1 N xrxs
+ V|6, 4
silew v [T
+S S dx’l 0
de’rné(t:}:——n).
c

(7.2)
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The left-hand side of Eq. (2.10) becomes
Frs,() + FsO.r - Fro,s

(-2
S rS
xs X xr .8 dxn 0
Jolo=aplr =)
r r c

U BY A N
+ [SZ + (S) i cS? rS]

1 B
+ =l VF-
Sz[ c:’
x° .y x" .5\ s# dx.q 0
xfdr === )"tF=2=7). (1.3)
¥ r ¢

The left-hand side of Eq. (2.11) vanishes identically.

Whatever the motion of the particle, if its position
at time ¢t — d,/c is the origin, it cannot be in position
x at the time z. Thus the current at (x, ¢) vanishes and
expressions (7.1), (7.2), and (7.3) must all be set equal
to zero identically in %®. This yields

AN MY 2M | C
= — —4+—==0, (74
(5 (5) rszm=o 09
BY NY EN_C/C:EA:EM=O, (1.5)
e s? rs? cS?
B+ N=0, (7.6)
cY  2C
- — =0, @7
(SZ) + rS? @7

(7.8)

(7.9)

vy |4 U A
- —F =+ —=0, (7.10
(S) + rS = cS? + cs® (7.10)
vy V U C M
Y _ LY —— =0, (7.11
(S ) S ¢S? ASE *SP (.11)
BFcV =0, (1.12)
N4cV =0, (7.13)
(i" M _o, (19
S rS
BY A N U
B\ A _N_ Yo 15
(S) i cS® 1S + s? (7.15)
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Equations (7.4)—(7.15) are twelve equations (some
differential, some algebraic) in the seven unknown
functions A, B, C, M, N, U, V.

8. SOLUTION

It turns out that Eqs. (7.4)—(7.15) are not all inde-
pendent; yet there are enough of them to determine
the solution up to an arbitrary multiplicative constant.
The solution so determined is

A=tcU=FLtso—s=sLli—el
cr? cr2< 16a4)’
(8.1)
S 1 Kr
B=—-N=3+V=—-n—=—————, (82
cir ctr cf4a® ®2)
N s
=(3) =5 +rs+ D, 8.3
(r) T Y T (83)
28 2 2
M=+—==+—+r—; 8.4
:hcrz icrzix4a2 84)

The arbitrary multiplicative constant has been chosen
so that our solution coincides with the ordinary
Liénard-Wiechert solution when « =0 and for
k # 0 in the limit r « a. For a source at the origin
(where r is in fact infinitely smaller than g), this
ensures the correctness of our solution also at the
source.

All that remains to be done is to reconstruct G and
H from the functions in Egs. (8.1)~(8.4), substitute
these G and H in Eqgs. (3.9)-(3.12) to find G and H,
and use these G and H in Eq. (3.1).

9. RESULTS

We are now in a position to write down explicitly
the retarded and advanced solutions of Maxwell’s
equations in a Friedmann universe. They are

FOT(X’ t) = L dsy
eS(Ixl) J IS(yDP

: d
X {———[Sflyyﬁ)] J°(y, tF T")(—y;)
_ [S(|yx\)(2 - S(‘yxl))a _28(lysD) - p:’

2 rp X7 x
¢yl e lyxl*

0Yx s dxy> S(ly«l)
x 22y, 0 F o) - S
oy (y c) Ty

r o2y OVR s dy
— YY) ay ~J ,o(y, t+ —')}
y c

©.1)

X [,
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1 a3y
F.(x, 1) = —
(0 = = TsGx0F | SAYDF
y {S(IYXD(Z -~ S(Iyxl))[ N yra_Y_i]
e ly,l® “Toyr TToy”
dyy S(lyx
X J”(y, tF —c—) + ——Ca(:z }Z
SOV L 0¥ dyy }
— oy x| (o G
X I:yxayp yx ayl,] ,O(y c ) .
9.2)

The plus or minus signs refer to the retarded and
advanced solutions. The function S is defined in Eq.
(2.4); the rule to find y, in terms of y and x is given in
Eq. (3.2).

For the retarded or advanced field of a charged
particle following the world line y* = %*(r) (+ being
the proper time), use J* of Eq. (4.3). If the particle
happens to be at the origin at time ¢ F d, o/c (the
case we used to solve for the unknown functions),
things simplify considerably. In that case we have

Fo(x, 1) = -S(—:Zi f dr ﬁ“é(t F df* - n“)

2 — .8
+ [ f(r)ars_zxf}
cr cr

deT ﬁsé(t F Gxn - 770)
c

1 x"x®
— s XX
czr[ T2 :|

x f dr 78 (t F Gan _ n"), ©.3)
C
2 —S(r Ser TS
Fo(x, 1) = ——cgs(r)(rs) dr (i — Xif)
X 6()? - &.’l — ro) F 1
¢ ' S(r)r

XJ‘dT(xsﬁr _ x’ﬁs)é’(t — &n_ 7]0)
C

CX:)

The dot indicates derivation with respect to =, and r is
|x|. When a derivative of F,, at (x, f) is desired, one can
apply the space- or time-derivative operator to Eq.
(9-3) and (9.4) and then effect the substitution (6.3).

10. COUNTER SOURCES IN A CLOSED
UNIVERSE
In this section and the next we concentrate on the
spherical (closed) universe (x = +1) and study a
feature peculiar to this case: charged particles in a
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spherical universe must exist in pairs, and retarded
and advanced fields must appear symmetrically.

Consider the retarded solution in Egs. (9.3) and
(9.4). 1t is singular at the origin where the charged
particle is; it is an empty-space solution for all finite
x. However, for r = o it again develops a singularity.
In the closed spherical case, r = oo is just another
point of the three-dimensional space, the one dia-
metrically opposite to the origin » = 0. The fact that
the coordinates of this point are infinite reflects a
singularity of the system of coordinates, not of the
space.

In order to study the neighborhood of r = o, we
introduce a transformation of coordinates that inter-
changes the roles of r =0 and r = o0 and moves
each point to the diametrically opposite point. It is

= —x4a®/r, (10.1)
and may be inverted into
x = —E4a?/p?, (10.2)
where p stands for |§|. We have
0x"[08° = —(4a*/p*)(0,, — 287&[p?).  (10.3)
Also,
xjr = —Efp (10.4)
and
S(r) = (4a*/p®)S(p)- (10.5)

The distance d,,, reexpressed in the new coordinates,
becomes

dy = deyy, = ma — dy,. (10.6)

All these relations may be used to transform the
metric and the retarded electromagnetic field. When
this is done, we find that the metric is unchanged—
it is the same form in ¥ as Eq. (2.3) is in x. As for the
electromagnetic field, the coefficients in Egs. (9.3)
and (9.4) become the same forms in  as they originally
were of X, except that a number of signs are changed
so that the new coefficients are those of the advanced
solution with an over-all minus sign. The argument in
the ¢ functions becomes

t—@*n‘]:t— 7r-a-+d—z—"—7]°. (10.7)

c c ¢

We therefore find that the retarded field of particles
following the world line x = 0%(7) r = %°(+) (which
passes through the origin at time ¢ — d,/c) and
carrying a positive unit of charge, is at the same time
the advanced field of a particle carrying a negative unit
of charge and following the world line § = n(7),
t = %) + majc (which passes through the dia-
metrically opposite point at the time 7 + d,/c).
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Thus the solution we are considering does not
correspond to just a single particle but to a pair of
particles of opposite charge carrying out related
motions. For just one charged particle in the whole
spherical space, no solution exists. This could be
expected on intuitive grounds, for the “lines of force”
starting at a charge cannot in this case go out to
infinity and must therefore end in an opposite charge.
Thus it turns out that the field of a system of many
particles cannot be constructed as a superposition of
solutions of each particle alone. One must deal at
least in pairs. The fields of Eqs. (9.3) and (9.4)
correspond to a pair of particles carrying out related
motions. Fields of pairs of particles carrying out
arbitrary motions are constructed in the next section.

11. AN ARBITRARY PAIR IN A CLOSED
UNIVERSE

In this section we consider a pair of oppositely
charged particles moving along arbitrary world lines
in the spherical universe and we construct the
corresponding electromagnetic field. It should be re-
membered that the whole expansion and recontraction
of the universe takes place over a period of 27a/c of
our coordinate time ¢ [see Eq. (2.5)]. We therefore
only prescribe the world lines of the pair of particles
for such a period, say for 0 < t < 2ma/c. But in the
static spherical universe these world lines must be
continued. Because of the continuity equation, they
cannot end (except possibly where they meet). It is the
freedom as to the particular continuation that we use
to accommodate the prescribed world lines of the
pair of particles.

For the purpose of the present section, let us specify
the world line of the positive particle as x = y(#) and
that of the negative particle as x = z(t). Both y()
and z(t) are specified for 0 < ¢ < 2mafc. Let us now
continue y(¢) for all times in such a way that

y(t — 2mnajc) = z(1), (1.1

where 7 is an integer and ¢ again ranges from 0 to
2majc. Now consider our retarded solution for the
positive particle following the world line x = y(?).
This solution entails a negative particle on the world
line

X = —y(t — majc) = 4a” (11.2)

ly(t — ma/o))®

surrounded by its advanced potential. On the field
we have so far, superimpose the retarded field of a
positive particle following the world line (11.2). The
particles on the world line (11.2) now cancel out, but
a negative particle surrounded by an advanced field

AMNON KATZ

now appears on the world line

X = y(t — 2mafc). (11.3)
Now superimpose the retarded field of a positive
particle following the world line (11.3) to cancel out

the negative particle and repeat the procedure. After
2n steps we find a negative particle on the world line

X = y(t — 2nmajc). (11.4)
But, by Eq. (11.1) (for 0 < ¢ < 2ma/c), this is the
world line x = z(f) prescribed in advance for the
negative particle.

In the field we have constructed, the positive particle
is surrounded by its retarded field and the negative
particle by its advanced field. A similar construction
could lead to the advanced field surrounding the
positive particle and the retarded field surrounding
the negative particle. If retarded (or advanced) fields
are desired for both particles, the following device
may be used.® Consider an arbitrary world line
x = u(?). Construct the field of a positive particle
following x = y(#) surrounded by its retarded field
and a negative particle surrounded by its advanced
field following x = u(z). Likewise construct the
solution involving a negative particle surrounded by
its retarded field following x = z(¢) and a positive
particle surrounded by its advanced field following
X = u(?). When these two fields are superimposed,
the particles on the world line x = u(f) cancel out.
We are left with a pair of particles following the
originally prescribed world lines, both surrounded by
their retarded fields.

The constructions discussed above involve a large
amount of arbitrariness. More arbitrariness could have
been introduced by further variations on the construc-
tion. This arbitrariness reflects the fact that the solution
of Maxwell’s equations for a given system of charges
is determined only up to the addition of an arbitrary
empty-space solution.

Note added in proof: In a recent paper by B. Sakita
(““Strong Coupling of Multipartial Wave Meson Iso-
triplet,” unpublished University of Wisconsin report),
an exact solution of the Chew Low equation, in the
strong-coupling limit with an arbitrary crossing ma-
trix, is exhibited. This solution is an entirely even func-
tion of the energy @ and is obtained by mapping the
problem onto the w? plane.
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The constitutive equations governing the propagation of electromagnetic waves of small amplitude in
a centro-symmetric isotropic material to which a static electric field is applied involve, in general, six
scalar functions of the static field strength and wave frequency. It is shown that if the material is non-
dissipative, four of these functions are real, while the remaining two are complex conjugates. Conditions
are also derived such that the material shall be nonabsorptive with respect to plane-electromagnetic waves
and it is seen that a nonabsorptive material is not necessarily nondissipative, but is necessarily stable.
It is shown that for a stable, nondissipative material, there are four real velocities corresponding to any
direction of propagation. If it is assumed that these are neither zero nor infinite for any direction of
propagation, then for each direction of propagation two of these velocities are positive and two are

negative.

1. INTRODUCTION

In previous papers,’? a theory has been developed
for the propagation of electromagnetic waves of small
amplitude in an isotropic, centro-symmetric material
to which a static electric field is applied. The con-
stitutive equations of the theory express the linear
dependence of sinusoidally varying magnetic intensity
and electric displacement fields on sinusoidally
varying electric and magnetic induction fields, and
they are expressed in terms of the complex fields. The
material properties enter into the constitutive equa-
tions through six scalar functions of the magnitude
of the applied static electric field and of tw, where

t=+—1 and o is the angular frequency. In the
present paper, we explore certain restrictions which,
in certain cases, may be imposed on the six con-
stitutive functions. These constitutive functions are
denoted by «;, f,, a3, f;, &;, and B;; they enter into
the constitutive equations through Egs. (2.4) and
2.3).

Firstly, we define a nondissipative material at a
given angular frequency and given applied static
electric field as one for which the energy dissipation
per cycle is zero for arbitrary applied sinusoidal
fields. We then show in Secs. 3 and 4 that for such a
material four of the constitutive functions («;, B,
a,, and B,) are real and the remaining two (xg and B)
are complex conjugates.

We define a nonabsorptive material at the angular
frequency w and static field & as one for which electro-
magnetic waves of this frequency and propagation
direction arbitrarily oriented with respect to the static
field undergo no absorption. In Sec. 5 we obtain
restrictions on the constitutive functions for a non-

) 1 R. A. Toupin and R. S. Rivlin, Arch. Ratl. Mech. Anal. 7, 434
1961).

2 M. M. Carrol and R. S. Rivlin, J. Math, Phys. 8, 2088 (1967).

absorptive material. We see that certain of these
restrictions are implied by those for a nondissipative-
material. The remaining ones, however, are not,
unless we assume also that the nondissipative material
in stable, i.e., that a wave of angular frequency
cannot build up in amplitude as it propagates.

Finally, we show in Sec. 7 that for a nondissipative
stable material there are two positive and two negative
velocities of propagation, provided that we assume
that propagation with infinite or zero velocity is not
possible in any direction.

2. THE CONSTITUTIVE EQUATIONS
We consider a static electric field & to be applied to
a material which is isotropic and possesses a center
of symmetry. We now consider that small electric
and magnetic induction fields which vary sinusoidally
with angular frequency w are superposed on this static
field. Let E and B be the complex electric and magnetic
induction fields, respectively. Then we may write
(E, B) = (e, b)e', (2.1)
where e and b are complex vectors independent of
time. We shall assume that the corresponding complex
electric displacement field D and the complex magnetic
intensity field H are related to E and B by linear rela-
tions. They may then be written in the forms
(D, H) = (d, h)e'*", 2.2
where d and h are complex vectors independent of
time. It follows from previous papers!'? that the
constitutive equations relating d and h with e and
where ®, W, &, and A are 3 X 3 matrices defined in
b are
d=®.e+¥:b, h=Q:.¢e+ A-b, (2.3)
a rectangular Cartesian coordinate system, in which
&= (8§, &, &), by
D5 = 08y + 8,85, Wy = —aye,8,,

. 24
Ay = Bidiy + B:8:8;, Q= —Pre;8,. 24)
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In Eqs. 2.4), &, By, a3, B, o7, and B, are functions
of tw and of &+ &.

From (2.3) it is easy to derive relations expressing
e and h in terms of d and b. We obtain

e=P-d4+Q-b, h=R:d+S-b, (2.5)

where P, Q, R, and S are 3 X 3 matrices defined in
terms of @, ¥, Q, and A by

P = ¢,_1> Q = —¢-—1‘P3

R=Q& 1 S=A-Qd ¥

It follows from (2.1), (2.2), and (2.5) that
E=P:-D+Q-B, H=R-D 4 S-B.

3. NONDISSIPATIVE MATERIALS

We now derive the conditions on the matrices
P, Q, R, and S in order that the energy dissipated
per cycle shall be zero, for all B and D sufficiently

small so that the linear constitutive equations shall be
valid. Let T be the energy dissipated per cycle. Then

T =f2"/w{(a +E)- 22 g d—Bt} dt. (3.1)
o dt dt
From (2.1) and (2.2), we have
(D+, B+, E+, Ht)
= (d*+, b, et, h*) cos wt — (d—, b—, e~, h™) sin wt,
(D-, B, E-, H")
= (d+, bt, et, h*) sin wt + (d=, b~, e~, h) cos wt.
(3.2)

Introducing (3.2) into (3.1) and carrying out the
integration, we obtain

T=mn(e+-dt —et-d~+h +b" —ht-b).
Now, from (2.5), we have
et =Pt. &+ =P -d- 4+ Q+*-bT —Q b,
ht =Rt.dt — R -d~ 4+ St.bt* — S~ .b-,
e =P .d++Pr-d+Q -b"+ Qb
h-=R -dt*+ Rt.d=+S--bt 4 St-b~.
Introducing (3.4) into (3.3), we obtain
T=zw[@ P edt4+d P -d)
+ (b*-S= bt 4+ b S -b)
+ d+-(P+—f’+)-d—+b+-(S+— S+)-b“
+d - (Q +R) b +d - (Q +R)-b-
+ d+ - (QY — RY)+b~ + bt (RT — Q) -d],
(3.5)
where P+, Q—, - - -, etc., denote the transposes of the
matrices P+, Q—, - - -, etc.

We shall suppose that 7 =0 for all b and d. It
follows, by differentiation of the relation (3.5), that

P-=S =0, Pr=PF+ S+=5+
Q +R =0, Qt — R+ =0.
Thus, if the energy dissipated per cycle is zero, we

(2.6)

2.7)

(3.3)

(3.4)

(3.6)
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may conclude the following:

(i) P and S are real, symmetric matrices;

(ii) Q*isthe transpose of R+ and Q— is the negative
of the transpose of R—, ie., Q is the transjugate
matrix of R,

From the relations (2.6) it follows that

=P V¥=_-P1Q,

Q = RP?!, A=S-—RP'Q.
From (3.7) and the results (i) and (ii), we readily
obtain the following results:

(3.7)

(a) ® and A are real, symmetric matrices;

(b) ¥ is the transjugate matrix of —S.
Conversely, it is evident that if the conditions (a)
and (b) are satisfied, so are the conditions (i) and (ii);
in either case the energy dissipated in a cycle of angular
frequency w is zero. Thus, (i) and (ii), or (a) and (b),
are necessary and sufficient conditions that the energy
dissipated in a cycle of angular frequency w be zero.
A material which satisfies these conditions for a given
angular frequency w and static field & shall be called

nondissipative at angular frequency « and electric
field &.

4. RESTRICTIONS ON CONSTITUTIVE
FUNCTIONS FOR NONDISSIPATIVE
MATERIALS

We shall now discuss the restrictions on the con-
stitutive functions «,, By, o3, B2, %7, and B, which
result from the assumption that the material considered
is nondissipative at a specified angular frequency
and a field & of given magnitude but arbitrary direction.

The expressions for @,;, ¥,;, Q,;, and A, in terms
of the o’s and f’s are given by (2.4). We note that the
o’s and f’s are independent of the direction of &. It
therefore follows from the first and third parts of
(2.4) that if the condition (a) in Sec. 3 is satisfied for
& of given magnitude and arbitrary direction, then
o, %, B1, and B, are all real; ie.,

o =o =fy=p7=0. (4.1)

Again, if the condition (b) in Sec. 3 is satisfied, it

follows from the second and fourth parts of (2.4) that

% = fs, (4.2)

where the star is used to denote the complex con-
jugate. From (4.2) it follows that

of =f3 and oy + f; =0. (4.3)

It is evident that if the relations (4.1) and (4.3) are

satisfied, then the conditions (a) and (b) of Sec. 3 are
satisfied for all & of the specified magnitude.
5. NONABSORPTIVE MATERIALS

It has been shown? that if a plane-electromagnetic
wave of angular frequency w and wavenumber k is
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propagated in the direction of the unit vector n in the
presence of a static electric field &, in a material to
which the constitutive equations (2.3) apply, there are
four possible complex velocities for the wave. Denoting
the inverses of these (the complex slownesses) by

N1s N2, N3> Na, We have
1
2(8, + B:8)
X [— (s + Be)8s £ (0 + B2)%8E + doy(By + BED I,
(5.1)
ooty = 5 1=t Bl (my o P83 + )
(5.2)

77197]2=

where
A = By + 2185 + o587
o + “7(83 + &)
and the rectangular Cartesian reference system x is
chosen, as it may be without loss of generality, so that
n is the direction of the x; axis and & lies in the x,x,
plane, i.e., &§ = (6, 0, &;).

We consider here the restrictions which are placed
on the six complex constitutive functions «,, 8, «3,
Bz, o7, and B,, if it is assumed that none of the waves
suffers absorption for any direction of the applied
static field. This implies that ,, N2, N3, and 7, given
by (5.1) and (5.2) must be real for all values of &,
and &, such that & + &2 = &(const). The necessary
and sufficient conditions for this to be the case are:

(@) (o5 + B)/(Br + B:8D)
(i) (o5 + Ba)/A
(iii) oy/(B; + /37((;?)

, (5.3)

must be real,
must be real,
must be real,

(iv) oy/4 must be real,
202
(v) (2 + ﬁZ),f‘; 5 ; must be nonnegative,
4By + 61" Br+ Bty
202
(vi) (o + Po) s + must be nonnegative.

4A4® A
A is given by Eq. (5.3).
The above six conditions must, of course, be
satisfied for all values of &, and &, such that & 4
& = &, where & is the magnitude of the applied
static field.
Taking &, = 0 in condition (i), we have

(a5 + B2)/B1]™ =0, (5.4)
and hence from (i),
[B2/1]” = 0. (5.5)
Condition (iii) then yields
[Bu/ea]™ = [Ba/ou]” = 0. (5.6)
Conditions (ii) and (iv) may be expressed as
[(xg + B2)/A]" = [on/A]” = 0. (5.7
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It is immediately evident that the results (5.4)-(5.7)
are equivalent to

[(x3 + Bl = [Bi/o ] = [A]us]™ = [Bs/u] =0,
(5.8)

and that if (5.8) is satisfied, the conditions (i)—(iv) are

satisfied. Thus, (5.8) are necessary and sufficient condi-

tions that (i)-(iv) be satisfied. We shall examine

further the implications of the relation (4/«,)~ = 0.
From (5.3) we have

é_ = /3_1 + (asBs — O‘7/31)8% )
(o + 0‘782)

Thus the conditions (5.8) may be replaced by

(5.10)

It is evident that the relations (5.10) imply the
conditions (i)-(iv) of this section. Thus, (5.10)
together with conditions (v) and (vi) are necessary
and sufficient conditions that the material be non-
absorptive at angular frequency w and static electric
field strength &.

These conditions do not imply the conditions (4.1)
and (4.3) that the material be nondissipative at
angular frequency w and static electric field strength
§; i.e., a nonabsorptive material is not necessarily
nondissipative. It is easily seen that the relations (4.1)
and (4.3) imply the relations (5.10) but not necessarily
the conditions (v) and (vi).

We shall now investigate the implications of the
conditions (v) and (vi) for a nonabsorptive material.
Since these relations must be valid for all directions
of the static electric field, taking § = 0, §, = § and
using (5.3), we obtain,

(5.9)

& oy

&
oy - >0 and ooy + a8 )2
B + B:6 B + ®3fa8

Again, taking & = 0, §; = & and again using (5.3),
we obtain

>0. (5.11)

1

3 [(a5 + £2)°6" + 4oup] > 0.

(5.12)

6. STABLE MATERIALS

We consider a plane-sinusoidal wave of angular
frequency ® and complex slowness 7, travelling
parallel to the x; axis. The complex electromagnetic
field vectors E, B, D, and H at time ¢ are given by

(E, B, D, H) = (e, b, d, h)e*@n2s—?
= (e, b, d, h)e—mﬂ_waetw(nera—t) (61)

We note that the wave propagates in the positive or
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negative direction of the x; axis accordingly as 7+
is positive or negative. In the former case (y+ > 0)
the wave increases in amplitude as it travels along the
axis if 7~ < 0 and decreases in amplitude if 4~ > 0.
Again, if #* <0, the wave decreases in amplitude
along its direction of propagation if 5~ < 0 and
increases if 7~ > 0. Thus, the condition that the wave
does not increase in amplitude along its direction of
propagation is

g > 0. (6.2)

We describe a material as stable if all plane waves
which can propagate in it in any direction do so with a
complex slowness which satisfies the relation (6.2).
We note that the nonabsorptive material discussed in
Sec. 5 is automatically stabls.

We now consider the conditions imposed on the
constitutive functions «;, §;, a3, B, ;, and B,, for
a given field strength, if we add to the assumption
that the material is nondissipative the assumption that
it is stable.

From Sec. 4 we note that if the material is non-
dissipative, «;, f1, %3 + fa, %, B, and 4 are all
real. Thus, the complex slownesses 7y, 7, given by
(5.1) will be real unless the condition (v) of Sec. 5 is
violated. If it is, #; and 57 will have opposite signs
while 5 = ni. Consequently, either #, or n, will
violate the condition (6.2) and the material will be
unstable. Similarly, it follows from (5.2) that, unless
the condition (vi) of Sec. 5 is satisfied, the material
will be unstable. We thus obtain the result that a
nondissipative material will be stable if and only if the
conditions (v) and (vi) of Sec. 5 are satisfied for all
directions of the static electric field &.

For a stable nondissipative material it follows that
the values of 7, 1,2, 73, and #,, corresponding to any
direction of propagation, are all real.

7. THE SIGNS OF THE SLOWNESSES

In this section we shall consider the material to be
nondissipative and stable and shall add the further
assumption that all four slownesses of the wave
(which we have shown to be real in Sec. 6) are neither
zero nor infinite for any direction of propagation
relative to the applied static field. We will show that
for any direction of propagation two of the slownesses
are positive and two are negative.

In order to do this we write the secular equation
for the slowness # in a fixed rectangular Cartesian
system X in which the applied static field has com-
ponents &, and the direction of propagation is that of
the unit vector n(= 7#,).

In the coordinate system x, the slownesses # are
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given by the quadratic equations
By + B8 — B8 + (o3 + B8y — oy = 0 (7.1)
and
[(fy + %3Ba8?) + (21 — N A
+ (o + w8 (og + Ba)bsn — oq] = 0.
Now, suppose the coordinate systems £ and x are

related by
7.2)
Since in the systems x and X the unit vector n has
components d,; and 7, respectively, we obtain

ag; = 7. 1.3)
Also, since the components of the static field & in the
systems x and % are (§,,0, &) and Ei, respectively,
we have

x“ = aﬁfj .

& = a5;6; = ﬁdgi'
Substituting from (7.4) in (7.1), we have

B+ 13782 - ﬂ?n—jn—kgjgk)nz + (o3 + ﬂa)ﬁjaﬂl —o =0
(1.5

(7.4)

and
[y + %aBa8®) + (s — w8 oy
+ (o4 + 8o + B8 — o] = 0.
We shall introduce the notation
e = nA;. (7.6)
7}; are the components in the system X of the vector

slowness of a wave propagating in the direction n
with slowness #. From (7.6) and (7.5) we obtain

[(By + B:8855 — B28,8: 11 7 + (o3 + B8], — 0 =0
a.n
and
(181 + #3B28%8; + (21 — %3B2)8; 6177k
+ (o + 085 + B2)Ej; — 0] = 0.
Each of the equations (7.7) represents a quadric in the
7y 7z, 73 space. The four slownesses corresponding
to any direction of propagation are given by the
intersections of a line drawn in the direction of prop-
agation with the quadrics. Since for any direction of
propagation there are four (not necessarily distinct)
real values for the slowness, none of which is zero or
infinite, each of the quadrics is an ellipsoid which
contains the origin as an internal point. Thus, for any
direction of propagation, each of the equations (7.1)
gives two values for the slowness, one positive and
one negative.
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A modified admittance is introduced to give Kubo’s admittance at nonzero frequencies and to give the
isothermal static admittance at zero frequency within the scope of the Kubo linear-response theory. The
method is demonstrated by exact calculations of the frequency-dependent perpendicular susceptibility at
zero field and its modified susceptibility of the regular Ising model. The results appear as linear combina-
tions of the equilibrium spin-spin correlation functions of the lattice. The results are valid for all dimen-
sions and all frequencies and temperatures. A (¢ + 1) X (g + 1) matrix a'” describes the linear
combinations explicitly, where ¢ is the coordination number of the lattice. The properties of this matrix
are extensively discussed as a special case of a matrix A@(&), which satisfies a simple quadratic equation
of the form [A@ (&)} = (1 + &) for arbitrary values of &. Fisher’s algebraic transformation of the
spin—spin correlation functions for the regular Ising lattice is derived from the linear relation which holds
between the perpendicular susceptibility and the corresponding modified susceptibility. By means of the
product rules of the matrix A'9(§), the higher-order spin-spin correlation functions are expressed in
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terms of the lower-order ones in complete generality.

1. INTRODUCTION

Since Onsager has published his celebrated deriva-
tion of the partition function of the two-dimensional
Ising model,! there have been numerous works on the
model.2 These are mainly concerned with its equili-
brium properties. Recently Allan and Betts® performed
exact calculations of the frequency-dependent initial
perpendicular susceptibilities of the honeycomb and
square Ising lattices using the Kubo linear-response
theory.*

They have observed that the zero-frequency limit
of the susceptibility for the case of the square lattice
is different from the corresponding isothermal static
susceptibility calculated by Fisher® in terms of the
equilibrium theory. The difference is due to the basic
assumption of the Kubo theory that the external
force is turned in adiabatically into the system, which
is represented initially by the canonical ensemble.
Actually, Kubo’s statement in regard to this point is
more specific.* Let y5 ,(w) be the admittance with
respect to two physical quantities 4 and B, expressed
as a function of the frequency w of the external force.

* This work was supported in part by the National Aeronautics
and Space Administration through Sustaining University Program
Grant NGR18-002-005 with the University of Louisville.

1 L. Onsager, Phys. Rev. 65, 117 (1944).

2 For reviews see L. P. Kadanoff ef al., Rev. Mod. Phys. 39,
395 (1967); M. E. Fisher and R. J. Burford, Phys. Rev. 156, 583
(1967); E. W. Montroll, R. B. Potts, and J. C. Ward, J. Math.
Phys. 4, 308 (1963).

3G. A. T. Allan and D. D. Betts, The Frequency Dependent
Initial Perpendicular Susceptibility of the Ising Model (Department
of Physics, University of Alberta, Edmonton, Canada, June 14,
1967); Can. J. Phys. 46, 15 (1968).

4 R. Kubo, J. Phys. Soc. Japan 12, 570 (1957). See also R. Kubo,
Lectures in Theoretical Physics (Interscience Publ., Inc., New York,
1959), Vol. 1, p. 120.

5 M. E. Fisher, J. Math. Phys 4, 124 (1963).

Then, the zero-frequency limit of the admittance
1B4(0) gives the adiabatic static admittance, which is,
in general, different from the isothermal static
admittance y% ,. Within the scope of the dynamical
theory, however, one must be able to calculate the
isothermal static admittance if one manages to
recover the difference %, — xp,(0) caused by the
adiabatic condition by means of a suitable mathe-
matical transformation.

One of the purposes of the present communication
is to introduce a modified admittance y% ,(w) which
gives the Kubo admittance yp,(w) at nonzero
frequencies, but gives the isothermal static admittance
1% 4 at zero frequency. That is, we require the modified
admittance to satisfy the following equation:

1p4{®), when @ # 0,
T (1.1)
XB4a>

The method is based on the fluctuation-dissipation
theorem. First we observe that the difference between
two admittances y% , — x5 ,(0) is linearly related to
the zero-frequency Fourier component of the Kubo
correlation function* [see Eq. (2.9)]. This zero-
frequency component is absent in the response
function, of which the half-interval Fourier transform
gives the Kubo admittance. This absence seems rather
essential in the Kubo theory since the response
function should vanish (in the Abel limit) when the
response time interval becomes infinite. Now, if we
consider the Fourier transforms of the Kubo correla-
tion and response functions, there exists a linear
relation between them which has a highly singular
term arising from the zero-frequency component of
the Kubo correlation function. By means of the

T
xpa(®) = when w = 0.
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Hilbert transform® of the linear relation, we shall
show that this singular term gives rise to the required
difference. We may note here that, in the Kubo
treatment of the fluctuation—dissipation theorem, the
singular term is hidden, since Kubo considered quan-
tities of which the invariant parts are subtracted out
from the start.

We demonstrate the present method by the exact
calculations of the perpendicular magnetic suscep-
tibility y,,(w) and the corresponding modified suscep-
tibility yZ (w) for the regular Ising model. The results
appear as linear combinations of the equilibrium
spin-spin correlation functions and are valid for all
dimensions. A (g + 1) X (g + 1) matrix a‘® describes
the linear combinations explicitly. We shall give a
detailed discussion of the matrix a'? as a special case
of a matrix A (§), where & is an arbitrary parameter.
This matrix satisfies a simple quadratic equation of the
form (A@(£)2 = (1 + &% It is essential to under-
stand the properties of this matrix in the discussion
of Fisher’s algebraic transformation’ of the spin-spin
correlation functions for the regular Ising lattice. We
show, in fact, that Fisher’s transformation is a natural
consequence of the linear relation which exists
between y,,(w) and 37 (w). By means of the product
rule for the matrix A@(&), which is derived in the
Appendix, we express the higher-order spin-spin
correlation functions in terms of the lower-order ones
in complete generality.

The isothermal perpendicular static susceptibility
1L obtained as the modified susceptibility yZ (w) at
w = 0 proves to be in complete agreement with that
of Fisher’s static calculation, although the present
results are more explicit than Fisher’s expressions.®
The present results for the Kubo susceptibilities
¥ze(®), when specialized for the honeycomb and the
square Ising lattices, are also in agreement with the
results of Allan and Betts which we have mentioned
in the beginning. We have observed that the zero-
frequency limit of the Kubo susceptibility yx,,(0) gives
the corresponding y% only when g is odd.

We shall show also that, in the high-frequency limit,
the susceptibility is simply proportional to Efw?,
where E is the lattice energy. The limiting properties
with respect to temperatures seem to reveal further
physical insights into the present problem.

2. MODIFIED ADMITTANCE

To begin with, we define two kinds of correlation
functions in time with respect to two physical quan-

8 Tables of Integral Transforms, A. Erdelyi, Ed. (McGraw-Hill
Book Company, New York, 1954), Vol. 2, p. 243.
7 M. E. Fisher, Phys. Rev. 113, 969 (1959).
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tities A and B by
$54(1) = Tr p(AB(t) + B()A),

p = exp (—p¥,)[Trexp (—3,), (2.1)
where p is the canonical density matrix defined by the
Hamiltonian J¢, which describes the natural motion
of the system, B(¢f) is the Heiseriberg operator
defined by #,, and 8 = 1/(kT). Kubo’s correlation
and response functions® are given by ¢} ,(1)/2 and
¢5.4()/(ih), respectively. The present notations are
chosen differently from Kubo’s in order to ensure the
symmetry in the present work.

We assume the existence of the Fourier transforms
of the two correlation functions
o0
hu(o) = oo [ a0, @2)
where the limits of the integrals are taken to be the
Abel limits. Then we have

@3 4(w) = tanh (Bhw[2)D} (w) — 7B Tr pA°B°wi(w),

(2.3)
where d(w) is the Dirac delta function and A° and B?
are the diagonal parts of 4 and B with respect to the
Hamiltonian J€,. We can prove Eq. (2.3) using the
analytic property of the function Tr pAB(t) in the
domain 0 <Im¢ < AB or writing ¢%,(t) in the
matrix forms in the representation which diagonalizes
the Hamiltonian J¢, and using the property of the
delta function. The second term in the right-hand side
of Eq. (2.3) arises since ¢}, ,(¢) has a zero-frequency
Fourier component equal to 2 Tr p4°B°, whereas
é%.,4(t) does not have it for Tr pA°B® = Tr pB°A°
if the trace exists. The second term of Eq. (2.3) is
highly singular, but its Hilbert transform exists
[see Eq. (2.7)].

According to the Kubo linear-response theory
and the fluctuation-dissipation theorem,* the admit-
tance x5 ,(w) with respect to two physical quantities
A and B satisfies the following relations:

1 [® )
yal@) = = f ) dt
ik Jo

+o Qg (o)

= —i0p4w) + —j;f_ e

If we substitute Eq. (2.3) into this, we may arrive at a
function defined by

do'. (2.4)

1Ba(0) = —iDF 4(w)
" 1 +w(D§A(w’) tanh,(ﬁhw’/Z) do', (2.5)
T J—o @ — W
which satisfies
154(®) = 2pa0) + B TrpA°B’u(w),  (2.6)
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where u(w) is defined by

2

W)

(@) Jc—oo o' —w 0 € + w?
(0 for @ #0,
- {1 for w=0. (2.7)

Thus, the function y% ,(w), which we call the modified
admittance, has a discontinuity at w =0 and is
equal to the Kubo admittance yp4(w) when o # 0.
Since Tr pA°B%(w) is real, we have for the imaginary
and real parts of Eq. (2.6)

Im XgA(w) = Im yp (o),
Re % (w) = Re yp(®) + B Tr pA°Bu(w). (2.8)

In the following we shall show that the modified
admittance actually gives the isothermal static
admittance y%, , when & = 0.

The Kubo result for the difference between the
isothermal static admittance »%, and the Kubo
adiabatic admittance y g 4(0) is given by*

254 — x54(0) = B Tr pA°B° — BAB, (2.9)
where 4 and B are the equilibrium expectations of

A and B. From Egs. (2.6) and (2.9) we have immed-
iately
154(0) = Xirds (2.10)
provided that
AB = Tr pA x Tr pB = 0. (2.11)

This condition is always achieved if we replace 4 by
A — Aor Bby B — B, or both. This replacement does
not alter all the equations derived above.

For later use we shall write down the Kubo admit-
tance and the modified admittance for the case where
A = B. In this case the Fourier transforms @7, ,(w)
and @7 ,(w) are real, so that from Egs. (2.4) and (2.8)
we have for the imaginary parts of the admittances

Im () =Imy () = =0 (0) (2.12)

and for the real parts
Re z74(w) = Re g4 4(0) + f Tr pA°A%u(w), (2.13)
where

+o0 -
Re 4(0) = 1 f O, (o) B BALD)

3

(2.14)

—0 w'—a)

1 + o q)— ’ ,

Re y 4(0) = — f _@fﬂ do'. (2.15)
T J—© (w - (D)

The last equation is simply the Kramers-Kronig

relation.4
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3. PERPENDICULAR SUSCEPTIBILITY OF
THE ISING MODEL

We apply the method developed in the preceding
section and calculate the zero-field perpendicular
susceptibility and the corresponding modified sus-
ceptibility of the Ising model. We take the z axis as the
axis of anisotropy of the Ising model and apply a
periodic magnetic field in the x direction. Then the
total Hamiltonian of a lattice of N spins may be
written as

X =%, — M,H,cos (wt). 3.1)

In terms of the Pauli spin matrices o7, o}, and o7,
the unperturbed Hamiltonian J¢, and the magnetiza-
tion M, are given by

¥y = —J 3 ot (3.2)
(2,7)
N

M,=m>o%, (3.3)
P

where the first sum is over all nearest-neighbor pairs
and J is the coupling constant.

For the calculation of the zero-field perpendicular
susceptibility y..(w) and its modified susceptibility
1L (w), it is necessary to know the explicit time
dependence of the correlation functions defined by
Eq. (2.1), which, in the present case, take the forms

$oa§) = Tr (MM () £ M ()M,).  (3.4)

To obtain the Heisenberg operator M, (¢) described by
the unperturbed Hamiltonian, we first solve the
Heisenberg equation of motion for the x component
of a spin o7, located at the jth site of the lattice. If we
assume the cyclic boundary condition for the lattice,
the solution does not depend on the specific location
of the spin. A straightforward calculation gives

o5(t) = cos® (w)Il (Do%, hwy=2J, (3.5
where the operator II,(¢) is defined by
q
1) = H (1 — i tan (wot)0},407), (3.6)

and of,,, 0%,, -, o are the spins located at the
nearest-neighbor sites to the jth site. We note here
that, owing to the assumed Hamiltonian J€,, there
appear only the nearest-neighbor spins and the spin
itself in the description of the motion of a spin.
Substituting Eqs. (3.3) and (3.5) into Eq. (3.4),
followed by the expansion of II (¢) in the powers of
tan (wgt), and using the property of the trace, we have
the explicit time dependence of the functions ¢Z(¢).
The results appear as linear combinations of the sums
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of the spin-spin correlation functions defined by

(q) — 2.2 ... 2
0 =Trp OiOry " " " O
1<k1<ke<:-:<kzm=gq
oy =1,
(a) 2.2z .., 2
O =Trp 000, O, Okgnir?
1<k <ke< - <kgny15Q
3.7

where 0%, 0%, - - -, 0% are the nearest neighbors to 0.
There are (%) terms in ©@ and (,%,) terms in
02, . We note here that the correlation functions
of only even number spins occur in the sums. The
correlation functions of odd number spins are zero,
since the Hamiltonian J€, is quadratic in ¢*. The odd
number suffix in ®;“’+1 means only the number of the
nearest-neighbor spins involved in one term in the
sum. The present notation is chosen for later con-
venience in the discussion of the algebraic relations
between O@(n=0,1,+,q). Hereafter we shall
call ®!@ the spin-correlation sum.

In terms of these spin-correlation sums. the functions
+ (¢) take the forms

[/2]
+ (1) = 2Nm? cos? (wy!) Zo(i tan (wyt))>" 0L ,

[(g-1)/2]
‘ll’;z(t) = 2Nm”® cos* (wot) 20 (i tan (wot))2n+l®;(zrf+1 s
n—

(3.8)

where the notation [«] denotes the greatest integer
contained in «. Previously, Allan and Betts obtained
the second equation of Egs. (3.8) to calculate the
perpendicular susceptibility of the honeycomb and
square Ising lattices.

Our next step is to calculate the Fourier transforms
of ¢ (t) defined by Eq. (2.2). We shall first decompose
the trigonometric functions of Eq. (3.8) into the
Fourier components to obtain

4) (t) _ 2—q+1Nm2 2 z®(q) (q) t(q—?p)wot, (39)
n=0 pu=0
[(¢-1)/2] ¢
_ A 0
q+1 2 @(q) {g) 1(0—2‘1)00 ¢
¢acz(t) - 2 Nm 20 zo 2n+la2n+1 u ’
n=0 pu=
(3.10)

where the matrix clements al¢ is defined by the
generating function

(1 _ x)"(l + x)q—v = za(q) y=0,1,---, q.

(3.11)

It is this (¢ + 1) x (g + 1) matrix a'® which plays
the central role in the algebraic procedures involved
in the present problem. It satisfies a simple quadratic
equation of the form (a‘?)? = 2¢ and has many other
useful properties. The detailed discussion of the
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matrix relevant to the present work is given in the
Appendix. Hereafter, we shall omit the superscripts g
on ©!? and 4@ whenever convenient.

According to Egs. (3.9) and (3.10), the resonance
frequencies of the system are given by (g — 2u)w,
(u=0,1,2,---,9), each of which corresponds to
the energy associated with flipping a spin which is
surrounded by g neighboring spins of which (¢ — x)
spins are up and u spins are down.

When ¢ is odd, there exists no zero-frequency
Fourier component in both expansions, Egs. (3.9)
and (3.10). The unexpected absence of the component
in ¢! (1) can be easily understood from the physical
ground that it is impossible to flip a central spin
surrounded by an odd number of spins without
compensation of energy, because the resultant spin
of the neighboring spins does not vanish.

Next, when ¢ is even, from Eq. (A22) in the Appen-
dix we have

(3.12)

Aoptl,g/2 = 0,

am (1) (2)2)

Accordingly, in agreement with the general discussion
given in Sec. 2, ¢, (¢) does not have the zero-frequency
Fourier component and ¢% (¢) does have the zero-
frequency component equal to 24,(0), where A, (0)

is given by
[a/2]
AL0) = Tr pM My = 27°Nm® 3 ©p,a5,.4/2 -
n=0

Here M? is the diagonal part of M, with respect to the
Hamiltonian J¢,. This term does not vanish in
general unless the temperature is absolute zero
[see Eq. (4.3)].

Substitution of Eq. (3.9) and (3.10) into Eq. (2.2)
yields, for the Fourier transforms of the correlation
functions,

(3.13)

(3.14)

() = 2 PSS Ountan0 — (@ = 2)00),
e (3.15)
(D;Z(w,)n,Nm2 [(g-1)/2] ¢
= PYETI A u=o®2n+1“2n+1,u6(w —(q — 2p)wy).
(3.16)

According to Eq. (2.12), the imaginary parts of xZ, (w)
and y,,(w) are given by

Since the imaginary part of the susceptibility is a
measure for the energy absorption, we see that the

absorption of energy occurs at the frequency precisely
equal to (¢ — 2u)w,, p =0,1,2,-+-,4q.
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The real parts of yZ (w) and x,.(w) are calculated
by means of Eqs. (2.14) and (2.15). The results are

Re y7(w)
_ éi(——;’) N : i,ln: [«g) i, st tanh [K(q — 2u)] ,
W n=0 =0 q — 2u — (w]wy)
(3.18)
Re 1zal®)
Nmz [(g—1)/2] a , 1

®2n+la2n+l,u

q — 2 — (w]wg)”
(3.19)

where the primes denote that the terms involving
q = 2u are omitted and

2 hw, a0 =0

K = hwy/(2kT) = JJ(KT), (3.20)
[g/2]
Aa(w) = 27'Nm* z ®2na2n,q/2u(w)’
n=0
Aop g/2 = 0 for q = odd. (3.21)

Here the function u(w), as defined by Eq. (2.7), gives
a finite discontinuity to the modified susceptibility at
w = 0 when ¢ is even. The above two susceptibilities
are linearly related by the general equation (2.13),
which, in the present case, becomes

Re yZ(w) = Re y(w) + fA w).  (3.22)

We show later that Fisher’s algebraic transformation’
for the regular Ising lattice arises from this equation.

The calculations of x,,(w) by Allan and Betts for the
honeycomb and square Ising lattices proves to be in
complete agreement with the present results specialized
for g = 3 and 4. Whenever one needs to write down the
whole matrix a‘9 for a particular value of ¢, it is
simpler to use the generating function given by
Eq. (3.11) directly than to use the general expressions
given by Eqs. (A18) and (A19). We give here the
matrix 2@ for the cases ¢ = 2, 3, and 4 as examples:

2 1
a®=\1 0 -1/,
(1 -2 1
3 3 1
o 1 1 —1 ~1’ .23
1 -1 =1 1
1 -3 3 -1
m 4 6 4 1
2 0 =2 —1
a@=(1 0 —2 0 —1|.
1 =2 0 2 -1
1 —4 6 —4 1
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4. LIMITING PROPERTIES OF
THE SUSCEPTIBILITIES

In this section we shall discuss the limiting properties
of susceptibilities Re yT (w) and Re g, (w) with
respect to the temperatures and frequencies. The
limiting properties seem to reveal some physical
insights into the present problem. Because of the
linear relation Eq. (3.22), one may discuss either one
of them—whichever is more convenient—then the
other follows from the difference term.

A. High-Temperature Limit

It is known that the spin—spin correlation functions
fall off as K(=J/kT) or faster at high temperatures.?
Accordingly, from Eq. (3.18), when K « 1, we have

Re yo(w)

Nm2 _ q q
=" 1 4 2 ¢
kT { tgﬂ(l‘)

(/)
(g — 2p) — (w/wy)

+0(K),

(4.1)

where use has been made of @, =1 and q,, = ©
and a convention that the second sum is zero when
@ = 0. The first term is due to the thermal agitation.
The subsequent sum describes the resonance of a spin
surrounded by g nearest-neighbor spins which are
randomly oriented. From Egs. (3.21) and (3.22),
for the difference between two susceptibilities at high
temperatures when q is even, we have

ﬂAa(w) = Xfx(w) - xm-(w)

=70 (qu) Nm*Bu(w) + O(K?). (42)

B. Low-Temperature Limit

It is well known® that, as T— 0,

0,~ () +0ep(—aTh, @43
n

where a is a positive quantity. Accordingly, from Eq.

(3.18) as T— 0, we have

Re y L (0) > 2 Nm*(hwe)™ tanh (gK)[g? — (w/we)*T ™,
(4.4)

where use has been made of a, , = (2) and Eq. (A16).
The only effective resonance frequence is qw,, which
corresponds to the situation where all the nearest
spins are either up or down. In this limiting expression
the contribution from the term SA,(0) given by Eq.
(3.21) proves to be zero regardless of ¢. This makes
sense, because at low temperatures the process is
essentially adiabatic, and there should be no difference
between adiabatic and isothermal process. If we
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consider the next higher term in Eq. (4.4), then the
term BA (w) contributes a term proportional to
exp (—a/T)/T when g is even.

C. High-Frequency Limit

In this case there should be no difference between
two susceptibilities, since A (w) =0 when o s 0.
It is most convenient to use Eq. (3.19), for there is no
additional temperature dependence in the coefficients
of spin-correlation sums. We expand the frequency-
dependent factor in the powers of (wo/w) and use the
sum rules given by Eq. (A20). Then, we have for
w — ©

Re yq.(w)

Nm2 2

— _Am (‘%‘)2{@1 + (60, + (3¢ — a@g(%’)

e

where the leading term is proportional to the energy
of the Ising lattice, for ®, is proportional to the
energy. If there exists a Ising model which is measure-
able, then the measurements of the susceptibility at
the high-frequency limit should give the energy.

D. Static Susceptibilities

When the frequency w is equal to zero, Eq. (3.18)
gives the isothermal static susceptibility, because
Tr pM, = O satisfies the condition Eq. (2.11):

YLO) = N2 Y(KT) S S Oyt r(K(d — 2),
e (4.6)
where
@) = (1/«) tanh o, 7(0) = 1. 4.7

Fischer has obtained also a general expression for the
static susceptibility yZ . Based upon his expression,
Fisher® has given the detailed expressions for the
cases of ¢ = 2, 3, and 4. The present result supplies
the detailed expressions for general cases.

From Eq. (3.19), we obtain the Kubo adiabatic
susceptibility:

Nm2 [{e—1)/2] [(g—1)/2]

X22(0) = ®2n+1a2n+1,u/ (g — 2w).
(4.8)

When ¢ is odd, this equation is further simplified to

the following form:
Oypart! / (— ﬂ) , (4.9
2/nt1

2"’2ﬁw0 n=0 p=0

Nm2 [(g—1)/2]

Wy n=0
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where use has been made of Eq. (A21), and (x), =
al@+ 1) (x+n—1), (x),=1. This equation
gives the isothermal static susceptibility as well,
since A,(0) = 0 for ¢ = odd.

S. FISHER’S ALGEBRAIC TRANSFORMATION
OF SPIN-SPIN CORRELATION
FUNCTIONS

Based upon the linear relation between the Kubo
and the modified susceptibilities given by Eq. (3.22),
we shall derive Fisher’s algebraic transformation of
spin-spin correlation functions.” We substitute Eqs.
(3.18) and (3.19) into Eq. (3.22) and compare the
both sides of the equation; then we obtain a set of
linearly independent equations:

[{g—1)/2] [a/2]
®2n+1a2n+l,u = tanh (K(q - 2;“)) 20 ®2n02n,u7
Py

The equations for u lying outside the range specified
here are redundant. The reason is that the set of
equations is invariant under the transformation
% —¢q — , because of the symmetry property of the
matrix a,, given in Eqs. (A15):

n=0

a,, =(—=1'a, ., ,. (5.2)

The equations in the set of Eq. (5.1) are linearly
independent, since the determinant of the [(g + 1)/2] X
(g + 1)/2] matrix (az,.1,) Which describes the left-
hand side of Eq. (5.1) can be shown to be nonzero:

et [y, = (=airtetmbent, (5.3

By means of the orthogonality relation of the matrix a
given by Eq. (A16), we can solve Eq. (5.1) for ©,,,,
to obtain

2_q+1[<§] [(a-1)/2]

®2n+1 = 2ma2m,u

m=0 pu=0

x tanh (K(q — 21))a, 2041 >
n=0,12,---,[(g — /2] (5.4

If we recall the definitions of spin-correlation sums
0, given by Eq. (3.7), we see that Eq. (5.4) is Fisher’s
algebraic transformations of spin-spin correlation
functions for the regular Ising lattice of which the
Hamiltonian ¥, is defined by Eq. (3.2). Actually
Fischer introduced a transformation which is valid
for more general Ising lattices.” Equation (5.4) is
valid only for the regular Ising lattice. Within this
limitation, however, this equation seems to give the
most general and explicit results of this kind.

In the analogous manner we may express 0,, in
terms of ®,,,;. Using the orthogonality relations
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Eq. (A16), we obtain

[(e=1)/21 [{a—1)/2]
1y

— —¢
Opp = agpon + 2 em+192m 41,

m=0 u=0
x coth (K(q — 2/1'))(au,2n - aq/2,2n)9
n=20,1,2,---,[g/2], (5.5)
where the following obvious convention is used:
QAgi2,2n = 0 for q= odd. (5.6)

It is interesting to note that, wheng = odd andn = 0,
Eq. (5.5 gives an equation which holds among
Ozp11, for Oy = 1. When g = even and n = 0, Eq.
(5.5) is simply 1 = 1, for a,, = 1.

One application of Eq. (5.5) may be to express the
modified susceptibility in terms of ©,,,;. We only
need the following equation:

A 0)/(2°N m?)
[a/2]
= 20 ®2na2n,q/2
[{(e—1)/2] q
20’ ®2n+la2n+1,u coth (K(q — 2u)). (5.7)
=

Substituting Eqgs. (5.7) and (3.19) into Eq. (3.22), we
obtain the required result:

n=0

T
Re yz(w)
2 2 [(g-1)/2] ¢
= Nm' Nlm ! ®2n+1a2n—i—1,u
kT 2% ha)o n=0 u=0

1 K
- . (5.8
8 (q — 2u — (w/wy)  tanh (K(g — 2/4))) >-8)

One of the most useful solutions of Eq. (5.1) may
be to express the higher-order spin-correlation
functions ©,, ©,_;, -, O/ay41 by the lower-order
spin-correlation functions @,, ©,,---, Operey. We
first rewrite Eq. (5.1) in the form

q —
Z(e(—a+2s)K — (_l)ue(q—zs)K)as”@)M =0,
n=0

§=0,1,2,---,4, (59)

where use has been made of the symmetry property
of the matrix a given by the first equation of Egs.
(A15) and ©, are defined by

()

Using the product rule of the matrix given by Eq.
(A30), we can transform Eq. (5.9) into a form

(5.10)

q —
ZOAQ‘Q-FL,;(-‘Z)I_”@,. =0, t=tanhK,
e

n=0,1,2-,[(g =12, .11
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where the matrix A@(&) is defined by the generating
equation

q
(1= (L + 9 =3 AL,
p=0
v=0,1,2,-,q. (512)
This matrix is a simple generalization of the matrix
a. It satisfies the orthogonality and symmetry relations
given by Eqgs. (A3), (A6), and (A7). If we use the
product rules given by Eq. (A34), we can transform
Eq. (5.11) to obtain a set of linear equations, of
which only [(g + 1)/2] are linear independent:

S (Byu(cs) — Byy f(c)st®, =0,  (5.13)

where
¢, = cosh (2K), s, = sinh (2K),

and the matrix B(£) is defined by

(¢ —x)' = z;BvAf)x“; B, (&) = (—1)" (;) o,

vu=0,1,2-,q. (515

By definition, the matrix B(£) is triangular, i.e.,
B,,(§) = 0 for v < u. By means of the orthogonality
relation of this matrix given by Eq. (A.24), we have
the required solution:

q [g/2] —
Z Blv(c2)[Bvu(C2) - Bq—v,u(c2)]5‘2‘_l®u s

v=[q/2H1 u=0

l=q,q—1,"',[§j|+l, (5.16)

(5.14)

@l=_

where the spin-spin correlation sums ©, (u =
0,1,2,--+,q) are defined by Eqs. (3.7) and (5.10).

In the application of this general expression to a
specific value of g, it is more convenient to introduce
a matrix defined by

Fvu(c2) = Bvu(CZ) - Bq—v,u(c2)s (517)
which satisfies a simple symmetry relation T, =
—I'o_, x- Then, Eq. (5.16) becomes

q [a/2] =
z Flv(c2)l—‘v;4(c2)sg_ ®Il s

v=[q/2]+1 u=0
where 4 is the same as in Eq. (5.16). We write down the
detailed expressions for the case g = 6 as an example:

@;':—

(5.18)

0,= —x2+ 2x(x? + 1)0; — (5x2 + 1O, + 4x0,,
05 = —x(3x2 + 1) + (6x* + 8x* + 1),

— 5x(3x2 + 1)0, + 10x20,,
Op = —(6x* + 3x% + 1) + 6x(2x* + 3x% + 1),

— 15x2(2x2 4 1)0, + 20x°0,,
where x = coth (2K).
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[Note added in proof: After the completion of this
work the author noticed that G. A. T. Allan and D. D.
Betts, in the published version of their work,? resolved
the discrepancy between yZ and y,.(0) of the Ising
lattice by inserting a constant magnetic field H, in the
Hamiltonian ¢, and taking the limit & — 0 before the
limit H, — 0 in the end. Professor Michael E. Fisher
at Cornell University (private communication) kindly
informed the author that the discrepancy is resolved by
altering one of the interactions J at each site of the
Ising lattice.]
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APPENDIX: MATHEMATICAL PROPERTIES
OF THE MATRICES
ADE), al0, AND B@()

The Matrix AY(E)

For a given integer ¢, a (g + 1) x (g + 1) matrix
AW(§), with an arbitrary parameter &, is defined by
the generating function

(1= 9+ 8 =T APOF, v=01, .0
u=0

(A1)
If we introduce a transformation of the variable
=) y ==+ &), (A2)

of which the inverse is the same as itself, provided
that & % —1, we can show that the matrix elements
satisfy the orthogonality relation
a
gﬂA‘v‘i’(E)Aﬁi’@) =1+ &%y, nu=01-,4q,
(A3)

where d,, is Kronecker’s delta. A direct calculation
shows that Eq. (A3) holds even when &= —1.
Hereafter, whenever there exist no confusions, we
shall suppress the superscript ¢ of the matrix A,
We assume also that the subscripts of the matrix run
from O to g unless specified otherwise.

Since the matrix satisfies a simple quadratic
equation (A(8))? = (1 + &), itseigenwerts are (1 +
£)¢/2, The determinant and the trace of the matrix

prove to be
det |A(E)] = (—1—§)derV2
0 q = odd,
A = . A4
Tr (E) {(1 + 5)(1/2, g = even. ( )

SHOON KYUNG KIM

Accordingly, the degeneracy of the positive eigenwert
(when & > —1)is larger by one than, or equal to that
of, the negative eigenwert.

From the symmetry of the bilinear form of x and y
defined by

a

Eo(z) 4, ()" = (L + (x + y — x)E)', (AS)
v, =
we obtain a symmetry property of the matrix:

(4) 4,8 = (‘1) £ 4,(0). (A6)
v I

Directly from the symmetry of the generating function
involved in the transformation » — ¢ — », we have

Avu(s) =(=¢ )“Aq—v,u(‘f—l) = (— 1)v£q_vAV.a—n(£ _1)-
(A7)

It is a simple matter to obtain the explicit form of the
matrix by means of the binomial theorem:

) (" 's’ v)(—é)’, (A3)

where the lower limit of the summation /, is the larger
of 0 and 4 — » and the upper limit /, is the smaller
of ¢ — v and p. For the values of s lying outside of
this range, the product of the binomial coefficients
simply vanishes. From Eq. (A9) it is possible to
represent the matrix elements in terms of the hyper-
geometric function®:

A (&) =3 (— 1) (M i

s=l -

A9(E) = (—1)"(:)21% — g —psv—u+ 15 —8).
(A9)

This equation holds even when g is not an integer,
provided that |&] < 1. Alternate representations are
also possible if we use the symmetry properties given
by Egs. (A7) and (A6). From Eq. (A9) we can show
that the matrix elements are related to the Jacobi
polynomials® P#* as follows:

1-¢
(@) = (~—1)* ppab (- ,
A©) = (=17 + orp2 (1)

aB(£) — (—7) # 4(a) I_Z_é:)
PH(&) = (—2)*(1 + &) Av,l(1 —5) 4w
where

a=v—u>-—1, f=q—v—u>—1

8 Handbook of Mathematical Functions, M. Abramowitz and 1. A.
Stegun, Eds. (U.S. Government Printing Office, National Bureau of
Standards, Washington, D.C., 1964), Appl. Math. Ser. 55, p. 556.

9 See Ref. 8, p. 773.
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We give the explicit form of the matrix A®®(£) as an

example: o o
ABE =1 &-1 —E\).

1 =2 1

The Matrix a‘®
It is a special case of the matrix A9 (£):
a@ = AWD(1), (A1)

In the main text, this matrix has risen from the
Fourier expansion of the trigonometric function

q
sin® 6 cos”™ 0 = i27Y a,, ", (A12)
40

where we have omitted the superscript ¢ for conven-
ience. The generating function is written as

(1~ x)(L+ X = Z:oawx“ (A13)

and the orthogonality and symmetry properties are,
from Eqgs. (A3), (A6), and (A7),

q

goawaw =2%,,, (A14)

(q) Gy = (q)““v’ ay, = (=1, ,=(—1)a,,,.
v I

(A15)

From these we obtain the orthogonality relations in
“half”” dimension:

[a/2]

— fa-1
oav,2na2n,p - 2 (6vu + 6a-—v.y),
n=

[(g—1)/2] L
av,2n+1a2n+1,p = 2a— (6m - 6a—v,u)' (A16)

n=0

If we write the generating function of a in the form

q
1= x5+ ) = zoav,,x“, (A17)
P

we obtain an expression, which is sometime more
convenient than A(§ = 1), given by Eq. (A8):

s -2
a, =3 (~1) () (" ) 0<y, u<g, (A18)

s s/ \u — 2s
where the summation over s is limited to the range
where the whole number s gives nonvanishing binom-
ial coefficients. From this we obtain the first few
elements of a,, in terms of k,(= g — 2v):

aw=1, a,=k,, 2a,=k®—gq,
3la,y = ki — (3¢ — 2)k,,
4lay =k — (8 — 69K + 3g(g — 2). (A19)
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By means of these we obtain the sum rules for the
matrix, which we need in the present problem:

27 z Ayy = 6v0a
®

2‘0 Z avu(q -_ 21“) = 6",1’

n
27 2 avu(q - 2,“)2 = qﬁvo + 2! 6v2’

I3
2773 ay(q — 20)° = (3¢ — 2)8,1 + 3! 8.,

I3
270 Y a,(q — 2u)* = q(3q — 2)b,

u

+ 4(3g — Mo, + 416,
(A20)

where the summations over u are from 0 to g. These
equations could be obtained by differentiation of
Eq. (A12) by 0. By integrating Eq. (A12) over 6 from 0
to =, we obtain

Q .
zoa2n+1,u/(q —2u) = _2q—1n!/(_q/2)n+1’ q = odd,
from

(A21)
where

(W =a(@+ 1) (x+n~1),
(@) = 1.

We may need the following special elements of the

matrix a:
avO = ls a0v = (q)s
v

and for ¢ = 2p (p = an integer)

am,2n+1 = 0’ Apon = (_ 1)n (i) s

G211, =0, a5, ,=(—1)" (2;) (z) / @5)

=4%(4 — n),/p!.
The specific examples of the matrix for the cases
g =2, 3, and 4 are given by Eq. (3.23).

(A22)

The Matrix B@(§)

This matrix is generated by the equation

(¢ —-x)= 2_:OBf,f,’(5)x“, v=0,1,---,q. (A23)

We can show the following orthogonal and symmetry
relations in a manner analogous to the case of the
matrix AD(&):

q

gon(f)Bs,.(E) = 4b,,, (A24)

(Z) Bul8) = (Z)B a8 0Ky, p<q, (A25)



1714

where we have omitted the superscript ¢ for conveni-
ence. The explicit form is

B,,(§) = (—1)" (ﬂ) T~ (A26)

It is a triangular matrix, i.e., B,,(§) = 0 for u > .
In particular, when £ = 0 or & = 1, we have
Bvu(o) = (_l)vavu: Bvu(l) = Avu(o)' (A27)

We give B®(&) as an example:

1 0 0

Be(g) =[& —1 o).
& =2 1
Product Rule

One of the most important properties of the matrix
A@(¢&) arises from the following bilinear forms of
x and y:

3 3 ADE) A5

3=0 p=0
=1 =y+E+ U+ &y + (§ — &),
v=0,1,""+,q9. (A28)
Expansion of the right-hand side of this equation in
the powers of x yields the product rule:

3 A O
=(=D"A + EY)TE + A —
X A(q)'(_ (§ — ély)(l — y))
U+ ENE+ )

vu=0,1,---,9. (A29)

When the argument of the matrix in the right-hand
side of this equation becomes zero or infinite, we may
use the corresponding limiting values of the right-hand
side as a whole or we may rederive the equation
directly from Eq.'(A28). We consider only the
following special cases which we need in the present
problem:

(i) When £ = & andy =1,
3 4408 = (1 + 90,5,

glav.«r‘fsAsu(E) = (=281 + 5)”_"Bvﬂ(

SHOON KYUNG KIM

which is the orthogonal relation already given by
Eq. (A3). In this proof, however, we did not use the
unnecessary condition, & % —1.

(i) When £ = &, =1,

q
8
2 a,y°a,,
=0

— (=11 + y)°(i - i)v_ﬂAv,,(— (ﬁ)) (A30)

(iii) When y = &and & =1,

1-¢

m) (A31)

(iv) Wheny = —%andy =1,

S a9 4,0 = (=201 + OB, "(1 T i)

(A32)

From Eq. (A31) and Eq. (A32) we obtain the following
equations as a generalization of Eqs. (A16):

1 —
et

[e/2]

2 Z av 2n "A2n u(é)

= =27+ 97+ (B, (1) +

1+ ¢
(A33)
[(e—1)/2]
2 Zo av,2n+1§2n+1142n+1,u(5)
= 2870 + (B 5) = B (151) )
(A34)

When £ = 1, these equations in fact reduce to Eqgs.
(A16), owing to the first equation of Eqgs. (A27).

The author has obtained a matrix Q¥ («, §, »)
with three arbitrary parameters, which includes the
matrices A9(&) and BW(&) as its special cases. It
satisfies a simple quadratic equation and symmetry
relations analogous to those discussed in the present
work. We do not discuss it here since it is not necessary
within the scope of the present paper.
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The paper presents some solutions of the Einstein-Maxwell equations corresponding to a superposed
electric and magnetic field at right angles to each other. The solutions are stationary and include the case
of null field also. There are, however, some singularities in the metric tensor.

1. INTRODUCTION

A very common type of electromagnetic field that
one meets with in the laboratory is the case of static
superposed electric and magnetic fields at right angles
to each other. In this case the Poynting vector E x H
does not vanish, although there is no energy flux.

One may wonder how such a field can be accommo-
dated in the formalism of general relativity. The
essentially static nature would lead one to expect that
the metric-tensor components would be independent
of time (in the language of groups of motion, the
space-time must admit a motion with a timelike
generator). However, a completely static metric would
require all components such as R;, to vanish (i = 1,
2, 3; x* = t), whereas the crossed fields would require
at least some of these components to survive. The only
way to accommodate such fields thus appears to be to
introduce not a static but a stationary metric of the
type formally similar to what one meets in case of
rotation.

In this paper we propose to investigate some such
source-free fields and, indeed, some fields which may
be called null fields in the sense that

) F®F,, =0, *F"F, =0,
ie.,
E=H E-H=0,
but these are nevertheless stationary nonradiation

fields.
2. FIELD EQUATIONS

We start with the metric

ds* = fd* — (dx® + dy*) — 1dz* + 2m dz dt
(D
and assume further that f, v, I, and m are functions of
x alone. It is obvious that, if z is an angle coordinate,
the above metric is cylindrically symmetric. Number-

ing x, y, z, tas 1, 2, 3, 4, we assume further that the
only nonvanishing contravariant components of the

electromagnetic-field tensor are F¥(= —F%) and
FY (= —F4), For such a field one has

T = —T% €)
so that the Einstein equations
R¥, — §R*, = —8#T*, 3)
give
R% + R% =0. 4

In view of (4), it is possible to introduce Weyl-like
canonical coordinates such that!

S+ m? = x% 5)

Further, the fields being source-free, one has from the
Maxwell equations

F = Al(—g)* (6)

F* = B/(—g), (™)

where 4 and B are arbitrary constaits and g is the
determinant of the metric tensor.

For the line element (1) with Eq. (5) satisfied, the
Ricci tensor components are

and

(R = =[xy = v = (fi+ | ®
(—glR% = —(xpy + v, ©)
(—9tR%, = — %%(ﬂl{—cﬂ) (10)
(—o)tRY = — %% (&%@3}) (11)
(—o'R% =} f;(fi;'—c'-—'ﬁf-) (12)
(—g)'RY = é ﬁ(ﬁfi'"—‘) (13)

t'W. J. Van Stockum, Proc. Roy. Soc. (Edinburgh) 57, 135 (1937).
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where the subscript 1 indicates differentiation with
respect to x.

Now, with the usual expression for the electro-
magnetic stress-energy tensor,

(14)

v

TH, = — L (FF,, — }3%F,,F™),
47
the field equations give
— LBt — 147 + 2maB)
X

= -[xwu — - i (Lf, + mi)], (15)

(B~ 14+ 2mAB) = Gy +p). (16)
l(lAz + fBY) = — 1 _d_(_f_li_m_"ll), (17

x 2dx X
- 1(1A2 + fB* = _}i(wﬂl)’ (18)

x 2dx x

2 2 _ li Jmy — mfy
. (mA® + fAB) = 5 dx(————x ), (19)

2 dx (20)

— g(mBz — I4AB) = 1_‘1_(@1.__1'"_1)
x x
Among the four equations (17)-(20), because of the
symmetry of R,, and 7,,, only three can be inde-
pendent. Furthermore, Eqgs. (17) and (18) are identical
in view of (5). Hence there are effectively only two
independent equations in the set (17)-(20) to deter-
mine f, /, and m, of which again only two are inde-
pendent by virture of Eq. (5). From Egs. (17) and
(18) we get

T (21)

Far 4 18y = - —‘L(f————ll = ’fl).
x x
We take Eqs. (19), (20), and (21) as the basic equations
to determine f, /, and m.

We have not been able to get the general solution
of these equations. However, we have been able to
obtain a special class of solutions in the following
manner.

Writing
u = fll,
v =m/l, 22)
Eq. (5) gives
u + v2 = x2I. (23)
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Equations (19)-(21) become

4 d[ u®x d (v

2 mar + AB=———[-————J, 2

x( fAB) dx u+uzdx(u) @)

4 - d x dv

—-(mB® — IAB =—[——— , 25

x( ) dx u+t)2dx:| (25)
daa + fB2)=i[—x——iﬁ . (26)
X dxlu + v*dx

If now we assume that there is a linear relation
between u and v,

v=au + b, 27
we find that Eqs. (24)-(26) require
aA® + BA — bB2 = 0. (28)
Regarded as a quadratic in 4, Eq. (28) gives
= —(B[2a)(1 + p), (29)
where
= £(1 + 4ab)t. (30)
Hence, for the fields to be real, we have
14+ 4ab > 0. @31)

The solutions divide naturally into two classes,
accordingly as the sign of equality or inequality holds
in (31), and we consider them separately.

3. 1 + 4ab = 0 NULL FIELD
Of the tensors *F** dual to F*, only *F%,
= —*F#) and *F® (= —*F%)exist; hence *F*F,,
vanishes for the fields under consideration. If
1 + 4ab = 0, then, from Eqs. (29) and (39),

A = —(B[2a) (32)

and a little calculation shows that F*F,, also vanishes.
The field in this case is thus a null field, although it is
not a radiation field, as is clear from the stationary
character of the metric.

With (29) satisfied, Eqs. (24)-(26) reduce to one
single equation. Using (22) and (23) to eliminate f, /,
and m, we have, from Eqgs. (24)-(26), after one
integration

__x du_4B  C
(au + 1/4a)*dx  a a
where we have used (31) with the equality sign and
Eq. (32). C is an arbitrary constant of integration.
On further integration we get

1

(33)

— = _[4B% + C1 D)= —& (34
an + Uda [4B°x 4+ Clog x + D] & (39
say, or

au = —1/£ — 1/4a, (35)

where D is again a constant of integration.
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From (22), (23), (27), and (35) we now get

= —x§, (36)
f= (x[4a®)(4a + &), (37

and
m = (x/2a)(2a + §). 38)

Substituting these in Eqs. (15) and (16), one gets

y = —1}log (x/x,), (39)

where x, is an integration constant.

The solution given by (36)-(39) has singularities
at x = 0 and as x — co. Further, for large enough
values of x, £ is positive and hence z is timelike. In
particular, if z is an angle coordinate (as in the
cylindrically symmetric case), this would give rise
to closed timelike lines.

4. NONNULL FIELDS
If the inequality holds in (31),
1 + 4ab > 0, (31%)

the field is nonnull. Writing

du
6 = , 40
fu + 0® (40)
we have, using (27) and (30),
r 6) = + b + (1/2a) — (u)2a) {
* ) = T b+ (20)  (uray V
or
w 1+ &8  u? 1
=t _ 2
2a°1 — & 4a®  44° (42)
where
¢ = k exp (ub/2), (43)

k being an arbitrary constant of integration, and

_H 1+ & _ _1_
201 —§ 2a (“44)
Thus, from (22), (23), (42), and (44), we have
2
1=4,1=9) (45)
M
f=_1_x(1 +8) pwx(1-—-8) 1 x(1-§)
2a £ 4a ¢ 4ap &
(46)
and
2 2
me=g L8 Lx &) @

£ n &
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Substituting Eq. (40) in (26), we get
442 + fBY) = i(x i@). (48)
X dx\ dx
Using now (29), (45), and (46) in (48), we get
d*0 _ 4B* uo
where
p = log x. (50)
The first integral of (49) is
(d/dp)® = C* — (4B%u/ak)e’, (51)
where
v=p — (ub/2) (52)
and C is an integration constant. Further integration
yields
1 X +=C/2 232 x FC/2
—v/2 lu'
= ~(— - . 53
) 2(xo) * akCz(xo) ©3)
Thus, using (51) and (43), we get
C/2 2 —C/22
S T o
41 \x, akC*\x,
Equivalently we may write
4B u C. x
= = cosh® (= log =}, 55
d cal (2 o8 xo) (55)

where x, is a constant different from the x, of Eq. (54).

The only component of the metric tensor that is still
to be determined is e®¥. Substituting for f, /, m, and
A from (45), (46), (47), and (29) in (16), we get

xyn + g, = Bufa (56)

so that, substituting from (55), we have the first
integral

v =5+ £ tann (9 log i) (57)
x  2x 2 Xo
Hence finally
e¥ = C,x% cosh (9 log ﬁ) (58)
. 2 Xo

where C,, C, are arbitrary constants of integration.
Substituting from (58) in (15), we get

C, = C¥4. (59)

Thus the solution is finally given by (45), (46), (47),
(58), and (59). It has apparently singularities at x = 0
and as x — co.

The condition that the metric tensor can be diag-
onalized is that m/f must be constant. From (22),
27), (29), and (30) this would require that

b=0 (60)
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and either

p=+1,

A = —Ba (61)
or

= —1,

A= (62)
Equations (46) and (47) give in either case

f=mla, (63)

so that, with the transformation ¢’ =t + aZ, the
metric tensor becomes diagonal. Also, with (61),
(F%)’ yanishes and

B

FYy = — , 64)
o a(—g)t (
while, with (62),
(F31)/ — F31 —_ 0
and
(F*) = B(—g)t. (65)
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Thus the two cases correspond, respectively, to an
axial magnetic field and radial electric field in the
cylindrically symmetric case. These are, of course,
equivalent under a duality rotation to an axial electric
field and radial magnetic field, respectively.

The metric in the two cases is

I = x/§,

f=é (66)
and

f= x/‘f’

| = x§&, 67)

where we have absorbed “a” by a suitable transforma-
tion and y and & are given by (58) and (55), respec-
tively. These solutions already occur in the literature.?

% W. B. Bonnor, Proc. Phys. Soc. A66, 145 (1953).
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An introductory study is made of the relation between the local algebra of observables associated to a
region of space-time and the algebra of all operators (disregarding superselection rules) associated to the
same region of space-time. With a reasonable axiomatization of the problem and assuming the local
algebra of observables is a factor of type I, Il , or III, the relation between the two algebras is specified
up to unitary equivalence in terms of algebraic invariants.

The objects of study in this paper are some of the
operator algebras arising in quantum field theory. The
general problem to be considered is the relation be-
tween the local algebra of observables associated to a
region in space-time and the local algebra of all
operators constructed from the fields (disregarding
superselection rules) associated to the same region in
space-time. The situation is abstracted to a mathe-
matical system with several axioms, axioms that
seem reasonable from a physical point of view.
Some insight is gained into the factor types of the
lacal algebras—assuming indeed that the algebras are
factors.

We proceed to describe the mathematical system of
interest. First we presume a discrete group, the super-
selection group, called G. We denote elements of G
as g;, i€1; I is an indexing set, g, the identity. To

* Sloan Foundation Fellow.

each g, we associate a Hilbert space H;; H, is asso-
ciated to g,. The total Hilbert space H is the orthog-
onal direct sum of the H,:

H = ®H;. 1)

O is a * algebra in B(H), the algebra of bounded
operators. O;, i € I, are vector subspaces of O con-
sidered as a vector space over the complex numbers:

0-30,. )

This is taken to mean that O is the algebra generated
by finite sums of elements from the subspaces O,. O,
is the algebra of local observables.

Using the notation

8i8i = 8ui.iys

we assume
0,0; < Ou.p» 3
OH; < H; ;. (4)
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and either

p=+1,

A = —Ba (61)
or

= —1,

A= (62)
Equations (46) and (47) give in either case

f=mla, (63)

so that, with the transformation ¢’ =t + aZ, the
metric tensor becomes diagonal. Also, with (61),
(F%)’ yanishes and

B

FYy = — , 64)
o a(—g)t (
while, with (62),
(F31)/ — F31 —_ 0
and
(F*) = B(—g)t. (65)
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Thus the two cases correspond, respectively, to an
axial magnetic field and radial electric field in the
cylindrically symmetric case. These are, of course,
equivalent under a duality rotation to an axial electric
field and radial magnetic field, respectively.

The metric in the two cases is

I = x/§,

f=é (66)
and

f= x/‘f’

| = x§&, 67)

where we have absorbed “a” by a suitable transforma-
tion and y and & are given by (58) and (55), respec-
tively. These solutions already occur in the literature.?
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Observation 1: Of = 0;-,, with the notation,
(g) ' =g

Observation 2: The weak closures of the O, still
satisfy (3), (4), and the relation in Observation 1.

We assume from now on that O; and O are weakly
closed, reinterpreting (2) to mean that O is the weakly
closed algebra generated by finite sums of the type
indicated.

We further require

dimH; =N, i€l, )
that is, the cardinality of bases of all the H, are the
same. The final essential property we require is the
existence of a vector y contained in H, that is a
separator and generator for O. In the physical system

this is the vacuum vector.
Observation 3: O, is a sub-w* aigebra of O.

Observation 4: vy is a separator and generator for
O, restricted to H,.

A system satisfying all the above conditions will be
called a superselection paired local algebra system, an
SPLA. We wish to study the relation between O, and
O in an SPLA. In general, the structure is not yet
rigid enough to be able to say anything simple. We
will restrict ourselves to the case when O, is a factor,
in which case a structure theorem is accessible. First
we give two examples to show that it is possible for
either O, or O to be a factor without the other being a
factor.

Example 1: G contains only two elements, ggand g, .
Hy and H, are two-dimensional with bases (g, , a,) and
(b1, b,), respectively. In the basis (a,, a,, b, , b,) for H
we choose

1
1
= 6
=1, (©)
0
O, consists of diagonal matrices of the form
A
gl ©
—A— > (7N
0 B
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and O, the matrices of the form
A
° |B
L — (8)
0]

This provides an SPLA with O a factor and O, not.

Example 2: Let G be a group with N elements and
each H; a Hilbert space of dimension M2 We view
H as the tensor product H, X Hp, H, and Hp of
dimensions M2 and N, respectively. We associate each
element of some basis {#,} of Hp with an element of
G, h; <> g;, so that each g; acts as a unitary operator
in Hg, gh; = h(; ;. We let R be a factor, algebraically
isomorphic with the full M x M matrix algebra, in
H, with ¢ as separator and generator. Finally, we
identify

O,~R X g;,
H,~H, xh,,
p~d¢ X hy.
This is an SPLA with O, a factor and O not a factor,
unless G has only one element. Note that this con-
struction generalizes in an obvious way to the case
when N and M may be infinite, and R may be any
factor with a separator and generator. We will see
later that this is a canonical situation and will be
referred to as a trivial SPLA.

&)

The following result provides the basic device
employed in this paper to study an SPLA.

Lemma: Let a,, a,, -+, a, be in B(H), F a factor
of infinite type in B(H). Suppose

afa,-eF all iandj.

(10)
Then there exists a partial isometry U, with initial
projector onto the span of the ranges of the q,, such
that

Ua,e F alli. (11)

Proof: By induction, assume the lemma true for
5§ — 1 (the case s = 0 is trivial), so that

Va,eF, 1<i<s—1, (12)

with V a partial isometry onto the span of the ranges of
a;,1 <i<s—1. Weclaim Vo, € F, as

a;V*Va, = a} a,eF, (13)
Therefore
1 s—1

p— > (Vaa;V*)Va,eF.
e+ 3 (Vaaivs '
i=1

(14)
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In the limit € ——> 0" we see that Va, € F, since Fis
strongly closed, and the initial projector. of V is onto
the ranges of the g;, i < s — 1:

a,=V*a,+ (1 — V*V)a,,

Va, = V(V*V)a,, (15)
aja, = a)V*Va, + a;(1 — V*V)a,,
and therefore
a¥(l — V*V)a,eF. (16)

We write the polar decomposition of (1 — V*¥V)a,:

(1 — V*V)a, = V'*h. an
We note that & € F. Therefore
VA — V*V)a,cF. (18)

Using the fact that F is a factor of infinite type, we
can move the final projectors of ¥ and ¥”’to be orthog-
onal and construct a new U, so that Ua; € F for all
i and its intial projector is onto the span of the ranges
oftheq;, 1 <i<s. (U= W,V + W,V’ for suitable
isometries W; and W, in F.)

We see that the above lemma is also true for a
countably infinite number of a; instead of a finite
number. A variation of the above argument will prove
the result for factors of type I with a separator and
generator. We do not consider factors of type I .

From each O; select a sequence of elements a},
j=1,2,-++,N, N the dimension of the H;, such
that aly is a basis for H;. We assume all our Hilbert
spaces are separable at this point. Denote O, restricted
to H, by F, O, restricted to H, by F,, and d restricted
to H, by b;. We note that

bi*b, € F, all jandk, (19)
as

0»10; < 0,. (20)

Therefore we are in the situation of the lemma. Find
a partial isometry V; with

Vbl eF. (21)

If one is in the Iy factor situation, it is trivial that
V is unitary. We proceed to show that if the factor is
of infinite type, ¥; may be picked unitary.

The final projector of ¥V is a projection in F. If this
projection is equivalent to 1, then it is clear that a new
V', may be picked to be unitary. In general, let P, be this
projection in F. Using V,, we identify H, with P,H,,
and in this new basis for each H;:

bie P,F, all iandj. (22)

PAUL FEDERBUSH

(We carelessly identify operators in F; and F that have
identical matrix form in the present basis system for
Hjy and H;.) Also

F, < P,F.

Now 0,0, = O, implies F;F < F;, and therefore F;
is a right ideal of F. Since the b} span P,H,, for fixed i,
the weak closure of F;, F{L, equals P,F. Calling C;,
O, restricted to H;, it follows from 0,0;)-» < O, that
C; contains P,FP;, and from 0;-:0,0; < O, that
C; = Fand therefore C; = P;FP;. (C;is weakly closed
as it is E'O,E’ with E’ a projection commuting with
0,.) F is represented by C;, uniformly continuously,
and thus either F is isomorphic (as a C* algebra) to
P,FP; or else F modulo a nontrivial uniformly closed
two-sided ideal is isomorphic to P,FP,. The second
situation is impossible and the first situation implies
P; ~ 1. Thus we may pick V; unitary and work in a
basis with F; < F, Ff¥ = F.

Using the axiom 0,0; < 0, ; , we easily show that,
in the present bases, O, restricted to H; (and weakly
closed, for every i and j) is equal to F.

If we now let X be the restriction of an operator
X in O, to H,, then the image of X in H, is R XR;?
with R; unitary, R, FR;* = F, and R, is independent of
X. To establish this we observe that since F has a
separator and generator, all isomorphisms are spatial;
and the image of O, in each H; is faithful, since
F[I = F with I a nontrivial uniformly closed two-
sided ideal is impossible. F and the R; completely
describe O,.

It is important now to establish that each F; is
weakly closed. Consider an increasing sequence of
projectors in F;, weakly approaching 1. Since
0,0,0, = 0;, such a sequence is easy to come by.
We claim the corresponding sequence of elements in
O; (call them T}, Tj,--+) converges weakly, and
therefore converges to an element 1, in O;. From the
fact that 0,0;-: = Oy and O;-10; < Oy, it follows
that each of the elements T} restricted to each H, is a
partial isometry. Further, from 0,0, < O, it follows
that the partial isometries in the sequences are in-
creasing; that is, T7¢ restricted to the range of the
initial projector of T?_, restricted to H,, agrees with
T: | restricted to H,. It easily follows that T} con-
verges to an element 1; and F; is weakly closed. We
may now study O,.

The essential observation here is that knowledge of
the single element 1; in O, that restricts to the identity
in H, is sufficient to characterize O,, as all of O, is
generated by multiplying 1, by the algebra O, . It must
be recalled that since y € H, separates O;, the restric-
tion of an operatorin O, to H, determines the operator.
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A simple calculation is required to determine the
conditions on S, the restriction of 1, to H;.
The first relation we obtain is

1,.X~ = (R7'XR)™1,, (23)

where (R;71XR,)™ is the element of O, that restricts to
R;1XR; in Hy. This relation holds because these two
elements have the same restriction to H,. From (23)
upon examining the restriction of each side of the
equation to H, it follows that

X = (Rk)_l(sllc.)#lR(i,k)(Ri)_IXRi(R(i,k))_IS;::Rk' (24)
Since this holds for all X in F, we arrive at

S;i = R(i,k)(Ri)_l(Rk)—19 (25)

where the equivalence means that the two sides of the
equation, both unitary operators, induce the same
automorphism of F. There is only one other set of
conditions on the S! to guarantee that the F, R;, and
S determine an SPLA. This set of relations is obtained
by requiring that

1;1;€ Ol - (26)
This equation becomes
R R (S) ' Ry(Re)'S;nS7 = ST (27)

Equations (25) and (27) are the algebraic relations
to study for constructing an SPLA from F and the
group G. Equation (25) merely states that the map
g: — (R)™* induces a homomorphism from G into
the group of outer automorphisms of F. Equation (27)
gives the conditions on the Sj in terms of the homo-
morphism just mentioned. Equation (25) determines
Si up to a complex number of modulus one. Thus
(27) may be looked upon as conditions on these com-
plex factors, since this equation automatically holds
up to a complex factor. [It is easily checked that the
two sides of (27) induce the same automorphism of
F.] Unfortunately, we have not been able to find
whether every homomophism of G into Out (F) has at
least one solution to (27). However, if there is one
solution to (27), and calling this solution S, we look
for all other solutions by writing (S?)" = 4}S? with
Ai a complex number of modulus one, (S%)" any other
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solution. The A} must satisfy the algebraic relations
given by (27). Interestingly enough, these state that
At is a two cocycle of the usual cochain complex of the
group G with coefficients in the unimodular complex
numbers, the circle group. By changing the basis for
the H,; by a complex factor (multiplying each basis
element by a complex factor, the factors being constant
in each H,), 2} is changed by a coboundary. Therefore
the solutions of (27)—if they exist at all—are in one-
to-one correspondence with H%(G, T*). Unfortunately,
this correspondence is not canonical as we have
derived it.

Theorem: In an SPLA with O, = F, F a factor of
type I, I1,, or III, and group G, O is determined up to
unitary equivalence (under basis changes in each H,
separately) by a homomorphism of G into Out (F)and
an element of H3(G, T1).

It is attractive to conjecture that if, instead of
assuming F to be a factor, it is assumed that the
restrictions of O, to all the H, are isomorphic and
faithful, the same result follows with H*G, TY)
replaced by H3(G, Z), Z the center of F.

Corollary: If F is of type I and G is Abelian with
one generator, then the SPLA is trivial; and if G
contains more than one element, O is therefore not a
factor.

The corollary follows from the fact that, under the
stated conditions, Out (F) and H%*G, TY) are both
trivial.

The corollary may have some implications for the
factor-type problem in quantum field theory.

We conclude by remarking that the results in this
paper are clearly far from definitive. The obvious
examples of several free boson and fermion fields
with various choices of superselection rules should be
computed to relate the O, and O in these examples.
The free boson field is studied in detail elsewhere.l
The result here should also be related to the deeper
results of Borchers? that also relate the rings of
different regions of space to each other.

1 H. Araki, J. Math. Phys. 5, 1 (1964); 4, 1343 (1963).
2 H. J. Borchers, Commun. Math. Phys. 1, 281 (1965).
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Generating functions are used as analytic tools for the transformation of the integro-differential trans-
port equations to partial differential equations. The transformations are constructed so that their inverses
are known, Therefore, the problem of solving the integro-differential equations is reduced to the more
familiar problem of solving partial differential equations. Part I of this series introduces the general
method in detail for slab geometry. The general solution is given in analytic form, and the one-to-one
correspondence with Case’s method of elementary solutions is demonstrated. The results are extended
to slab geometry without axial symmetry. Part II extends the method to the general time-dependent,
anisotropic case for slab geometry. Parts [Tl and IV treat the stationary and time-dependent problems in
one and three space dimensions, introduce in addjtion the method of characteristics, and include numerical

results,

1. INTRODUCTION

To obtain approximate solutions to the Boltzmann
equation, various methods of spherical harmonics
and discrete ordinates have been used extensively.
Each time an approximation seems not sufficiently
accurate, the entire problem has to be done over again
with a higher order of approximation. In addition,
good error estimates are very tedious to obtain, Since
the existence of the general solution of the Boltzmann
transport equation in closed form has already been
proved,*? it is natural and desirable to ask for the
solutions of the spherical-harmonics representation.
If we can determine a formula for the exact Fourier
coefficients in the expansion in spherical harmonics of
the solution of the Boltzmann equation, the errors in
the corresponding coefficient functions of the usual
“truncated”” spherical-harmonics methods (as explic-
itly described by Davison,® Weinberg and Wigner,®
and others) may be obtained by comparison.

In this paper, appropriate generating functions for
the exact expansion coefficients in the spherical-
harmonics method will be obtained. Then, instead of
the infinite system of differential equations for the
expansion coefficients of the spherical harmonics,
only one partial differential equation for the generating
function is needed for the solution of the problem.

Paper I of this series is restricted to the stationary
isotropic transport equation in general slab geometry.

* Work performed under the auspices of the U.S. Atomic Epergy
Commission.

1 E. H. Bareiss, J. Math. Anal. Appl. 13, 53 (1966).

2 E. H. Bareiss and I, K. Abu-Shumays, *On the Structure of
Tsotropic Transport Operators in Space,” in Proceedings of Symposia
in Applied Mathematics, Vol. 20 (Am. Math. Soc., Providence,
R.L, to be published).

3 K. M. Case, Ann. Phys. (N.Y.) 9, 1 (1960).

4B. Davison, Neutron Transport Theory (Oxford University
Press, London, 1957).

8 A. M. Weinberg and E. P. Wigner, The Physical Theory of
Neutron Chain Reactors (The University of Chicago Press, Chicago,
1., 1958).

We solve the equations for the generating functions
by the method of separation of variables, and in
doing so, obtain formulas for the spectral representa-
tion of the generating functions. In particular, in the
case of slab geometry with axial symmetry, the

‘spectra are shown to be identical to those of Refs.

1 and 3. In the important case of slab geometry but
without axial symmetry of the angular distribution, a
very simple representation of the general solution
results.

When taken at the origin of the parameter, the
generating function furnishes the exact scalar flux,
corresponding to the first expansion term in the
spherical harmonics method (which is only an
approximation in the usual methods where the system
of differential equations was truncated). Similar
statements involving derivatives hold for the current
and for higher moments.

In the subsequent parts of the series, the time-
dependent and anisotropic transport equations for
different geometries will be treated. The method of
characteristics will be applied, the formulation of
well-posed transport problems will be discussed, and
numerical results will be presented.

The transport equation under consideration takes
the form

%%+09-Vw+vmp

=cwf } F(Q - QYy(r, ', Hd, Y, (1.1)
wQ

where

p = y(r, R, t) is the directional flux or angular
distribution;

t is the time;

r is the position vector;

v is a constant velocity in the direction of £2;
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c is the net number of neutrons produced per
collision;

[ is the scattering function;

o is the total macroscopic cross section at velocity
v;

£ is a unit vector with 0, ¢ its spherical coordinates
(6 colatitude, ¢ longitude);

d,Q = du dé = sin 0 df dp is the surface element on
the unit sphere;

V = grad operates with respect to r only.

2. STATIONARY ISOTROPIC TRANSPORT IN
SLAB GEOMETRY WITH AXIAL SYMMETRY

The purpose of this section is to illustrate the
technique of applying generating functions to the
transport equation. The results of Case® and Bareiss!
are obtained. The expressions containing the Dirac ¢
function and the principal values follow from well-
established relations in analysis.

The stationary transport equation in its simplest
form is
2.1

0 N
s iz, w) + v(z, ) = —f ¥(z, 1) du.
z 2

The angular distribution (z, #) is expanded in
Legendre polynomials as follows:

wew =32 r 0w, @)
where
n = s )P, )
1@ =] wewrgman

f.=0, for n<0
Direct application of the relation
(2n + DuPy(p) = (n + DP, (1) + nP,4(n) (2.4)
to Eqgs. (2.1)-(2.3) yields the recurrence relation
(n + D fra(2) + nf4(2)
+ @n + Dfu(2) — ¢dy0fo(z) = 0. (2.5)

A generating function for the expansion coeflicients
[f-(2) is now defined as

x(z,0) = ZC”fn(Z) (= &+ in).

Applying (2.6) to (2.3) gives the following transforma-
tion of the angular distribution y(z, u) to the gener-
ating function x(z, {):

+1 ©
22,0 = 9 S0P, d

(2.6)

Y(z, ) du

Laiis e
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The condition || < 1 is necessary and sufficient for
the convergence of the series

Ec"P,,(u) dp=(1-2L+ 07 (uel-1,1))
(2.8)
and therefore the convergence of y(z, {) is asserted
for |{| < 1. Further, the right-hand side of Eq. (2.8)
and hence the right-hand side of Eq. (2.7) is analytic
in { for |[{] <1 and we[—1,1]). Thus y(z, ) is
analytic in { for any |{] < 1. We note that

+1
ly(z, p)| du L < @,
-1 = 2ul + &7

since'(a) {1 [y(z, u)| du is required to exist if y belongs
to the solution space and (b) [1 — 2ul + {3 # O for
real y € [—1, 1] and |{| < 1. Conversely, if

lim y(z, {) - o

(‘zﬂi < 1)5
C""to .

it follows from (2.9) that condition (a) could not be
satisfied. Thus we have:

Ix(z, Ol < (2.9)

Theorem 2.1: A necessary condition for y(z, ), as
defined in (2.6), to be a generating function for the
Fourier coefficients f,(z) of the Legendre expansion
of the solutions y(z, u) of (2.1) is the analyticity of
x(z, §) in { for the entire interior of the unit circle
1 <1

Applying the definition of the generating function
Eq. (2.6) to the recurrence relations of Eq. (2.5), or,
equivalently, applying the integral transform (2.7)
to (2.1) gives

2

(1+§2 x+c x+z;—

0z0¢ a*

+ 2(2,8) — cx(z,0) = 0. (2.10)
Equation (2.10) is of hyperbolic type. By Theorem
2.1, only its solutions which are analytic in { for
|{l <1 are generating functions for the Fourier
coefficients f, of (2.2). After (2.10) has been solved
for y, the particle density p(z) is given by y(z, {) at
{=0,

120 =[ vemde=pa, @11

as follows immediately from (2.7).

The expansion coefficients f,(z) of the generating
function, if desired, are obtained by evaluating the
derivatives at { = 0, because

fuz) = (i 9, C))

o (2.12)
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After these remarks we turn to the derivation of the
general analytic solution for the generating function
x(z, {) of (2.10). The method of separation of variables
is used. Let an expansion mode of x(z, {) be

1z, §) = X(2)G (D)

and denote G,(0) by G,,.
Then,

(2.13)

125 0) = fou(2) = Gy, X(2).

Substituting (2.13) in (2.10) and dividing by %,G,,
we get

14 Xv(c 1+ cz)iin)

X, dz G,d{

2{ d ¢ G,

—= =G, +1-— =0,
T G,
which establishes the separation of X, and G, . Now let
1 d 1

—X,=—= (r#0), 2.14a
X (z)dz v ( ) ( )

where, for the moment, » is an arbitrary complex
constant. Then

X, (2) = e, (2.14b)
The constant of integration will be absorbed in G,,
which must satisfy

[1— 29 + Cz]c—i%Gv 4+ [£ — 2]1G, + vc Gy, = 0.
(2.15)
If [1 — 2v¢ + (2] # 0, Eq. (2.15) has the integrating
factor [1 — 2v + (3% and may be written as

4 = 2t + 46 = — —2< G (2.16)

ar (1 =20 + 9
For v2 % 1 (no double root of 1 — 2v{ + {?), the last
equation can be integrated directly from zero to {
to give

3
Gm{l _cmgé—w [ —MH“"}}

11—

A — 2L + ),

G =
(2.17a)

_ _ ovd
Goy[1+cvlogv €+(11+M+§)]
(4

1 — 2¢ + O

(21.7b)

The case v = 1 can be treated directly from Eq. (2.16).
For» = &1,

¢ Goy

d —
—[AFOHGul="TF EXh

14
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and integrating from 0 to { yields
G,
Gu() = I—ﬁ 1+clogIF9] [{<1 (218)

We note that Eq. (2.18) is the limit of Eqgs. (2.17a, b)
asv— £1.

The next step is to examine the valuyes of » for which
the above solutions G,({) of (2.17) and (2.18) are
analytic for |{] < 1. The problem is solved if the
singularities of G,({) are known. The numerator of
(2.17) is singular if the logarithm is singular. It is
easily verified that this can occur only if »® = 1.
But, by (2.18), G.,({) is analytic. Thus we can turn to
analyze the zeros of the denominator in (2.17).
Instead, we analyze

1 — 28+ 2, (2.19)
the zeros of which can be represented as
3
L=rx0-1 (25
v—1
3 %
- ((-”—"‘—1) + 1)/((2—+—1) T 1). (2.202)
vy —1 y—1

Cleatly v v 1, [Li<1 forally. (220b)

Equation (2.19) suggests we consider the cases (a)
when v € [—1, 1] and (b) when » ¢ [—1, 1].

(a) For » real and in the interval [—1, 1), {, and {_
are a pair of conjugate complex numbers. Thus
{, = e*®, where cosf =y (0< 6 < n), and ob-

viously 1L =1L = 1. (2.21)

Hence, for all |{] < 1, (2.19) does not have zeros and
the integration leading to the solutions (2.17) and
(2.18) is legitimate. The solutions (2.17) and (2.18) are
analytic for {{| < 1 and hence by Theorem 2.1 are
factors of the generating function y, for all » €
[—1, +1}. For v — —1, (2.17a) is used; for v - +1,
(2.17b) is used to facilitate computation.

(b) For v¢ [—1,1], one of the zeros of (2.19),
namely {_, lies inside the unit circle [{{ = 1. We
require G,({) of (2.17) to be always finite for |{] < 1,
even when { = {_. Since in this case the denominator
of (2.17) vanishes, we require the numerator to
vanish also. Thus

1—

_ _ 2y
limGOV[l — erloghm 2 (1 =2t +Z)]=o.

[Sad 8

Since G,, # 0, this equation reduces to

1
Z“_v—l—cvlog(v-{—l) =0

- y—1
(2.22)

1 — cvlog
—y
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-1+

-2

<4 1

FiG. 1. The function Gy(§) for v = 0.5 €[—1, 1] and various values
ofc:(@c=0,(b)c=05)c=1,(d)c=2,(e) c=10.

or

e log v+l 1.

2 y— 1
Therefore, in the cut » plane, only the roots of (2.22")
are admissible. It is known that (2.22") has exactly
two roots, either both real (¢ < 1) or both pure
imaginary (¢ > 1) (see Ref. 1). They are denoted by
+%. That G, ({) is bounded follows from (2.17a)
and (2.22):

(2.22")

lim G,()
[Sad 4
| L=y , Q=20+
G 1-—
oviT;_( ov log (1 — + 1— ))

(1 — 2+ 9} .
o [1— 2+ 7
GOV(O ;lir;n_cv log (1 + —_——“g_ =, ))

[l — 2¢ + 22

= G,, Z = ¢y Gy, /(v — 1

v+ 1 ¥
)(v—_ 1) <
("’=:l:”o)-

(2.23)
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Furthermore, it can be shown from Egs. (2.15)
and (2.20a) that

Yy = ﬂ:',,o.

lim — Gv({) < o,
(- dl
Thus for v = 4-v,, G({) is continuous and has a
continuous derivative in { for all |{| < 1 and hence is
analytic in { in this region.

Some representative graphs of G,({) for real argu-
ment { = & are given in Figs. 1 and 2.

The set of all admissible » will be called the spectral
set S

S = SP U Sc,
SP = {’V:’V = :I:'Vo},
= {r:1 > 2> 0}.
Attention should be given to the fact that G,({)
exists for » € [—1, 1]; however, » = 0 is excluded by
(2.14a). Thus, if we restrict G,({), i.e., the solution

(2.17), such that » € S, the general solution of the
generating function x(z, {) of (2.10) is

(2.24)

(20 = 0,6, Qe + a_G_, (et

+ f G, (De da(v), (2.25)
(8,)

where y is analytic in |{| < 1 and |z| < co. If we
normalize G,(0) = G,, = 1, we observe from (2.11)

} —¢&
~1l -0.5 0 0.5 1

1

F1G. 2. The function Gy,(§) for different values of ¥9: (a) ¥ = 1,
c= 0, (b)y, = 1.0444, ¢ = 0.5, (c) ¥, = 5.8, ¢ = 0.99.
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that

p(2) = (2, 0) = a, e + a_e™ + f e da(y),

(S¢)
(2.26)

which is a well-known result.1:3

3. INVERSION OF THE GENERATING
FUNCTION AND THE GENERAL
SOLUTION OF (2.1)

The solution of the stationary isotropic transport
equation for slab geometry (2.1) is given by (2.2),
(2.12), and (2.24). The explicit representation for the
solution w(z, x) in expansion modes will now be
developed step by step.

For every admissible », the corresponding mode of
the generating function

XV(Z’ H= e_Z/va(C) 3.1

is a solution to (2.10). The corresponding expansion
mode y,(z, u) to the solution of the transport equation
is then given by

vz, 1) = éﬂzn 2+ 1( i e C)) Po(p)
_ gozn + 1( 1' aa_; G (c)) P ()

e D,(u) (vES). (3-2)

It follows by inserting (3.2) into (2.1) that @ (u)
satisfies the equation

(1=4)o00 =3 [0 da

and, for admissible », can be called an eigenfunction
of (3.3) corresponding to the eigenvalue ». Conse-
quently, the general solution of the transport equation
for slab geometry (2.1) [corresponding to (2.24) for
the generating function x(z, {)] takes the form

3.3)

‘P(Z, ﬂ) = a+®v0([u)e—2/vo + a—eZ/vo(D—Vo(”)

+ f 0, (u) da(i), (3.4)
(S)

where the ®,, @, are defined by (3.2) and satisfy
(3.3). As in Refs. 1 and 3, they obey orthogonality
relations which can be used to determine a., A(»).
Now we relate the eigenfunctions @, (u) to the
corresponding eigenfunctions given in Refs. 1 and 3.

AND E. H. BAREISS

We assume that G,(0) =
(2.22"),

G.(D

Gy, = 1. From (2.17b) and

I

e 2%@)*]

v+ 1

X [1+ 08— 2,017
=L+ (1+ 82— 2wt

(v — D
X (1 4+ %= 072

Since v, ¢ (—1, 1), it follows from Hobson (Ref. 6,
p- 69) that for |{| < |{_][,

G (D) = cv, éﬁgkgk(vo),

where Q,(v,) are Legendre functions of the second
kind. Interesting (3.5) into (3.2) yields

I:l + cv, log 22

¢y, log

3.5)

D, (1) = ev, iz”—;fl Q0P (). (3.62)
But this is {
D,(w) = * , (3.6b)
2 v—p
as shown by Hobson (Ref. 6, p. 62). Similarly,
crg 1
o) = —— (3.7

Equations (3.6) and (3.7) are identical to those
given by Case® and Bareiss.!

It will now be demonstrated that the eigenfunctions
@, (u) for v € [-1, 1] defined by (3.2) are equivalent
to those given in Refs. 1 and 3. Equation (2.17) can
be written in the form

!

— (oyjog =L H [+ £ = 20(]
G0 = (er1og ™=
[44 1+
+{1—2log1_v})

x [L+ 22— 22t wels,].
It follows from Hobson (Ref. 6, §37ff.), that this is

1
6D = o 3L00) + 1 = T1og {2 Sp).
(3.8)
Hence, the corresponding @, is given by
1

0, = o 32 E2 0,00P, 0

+ {1 = F1og (2 S PP
2 1 — v)roo 2

(3.9)

8 E. W. Hobson, The Theory of Spherical and Ellipsoidal Harmon-
ics (Cambridge University Press, Cambridge, 1931).
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But for v € (—1, 1), by definition (Ref. 6, p. 52),
Q.(») = lim {0, (v + i) + Q,(» — ie)}.
€9

Consequently, using Heine’s expansion (Ref. 6,
p. 62) again, the first sum in (3.9) is

3 @n + DQIP.(H)
1 1 + 1 } 1

= lim - - - =P )
02|V t+ie—pu v—ie—u Y —u

ve[—1,1], (3.10)
where P has been inserted to indicate Cauchy’s

principal value under integration. The last sum in
(3.9) is a ¢ function, since (see, e.g., Ref. 7, p. 19)

-2n+4+1

SEAL PP =00 -0 (D
With the definition
i =1— —czzlog%ﬂ, vel=1,1], (.12)

Eqgs. (3.9)—(3.12) lead to the representation

O (u) = %P;_i—” + A — ), vel—1,1].

(3.13)

This result (3.13) coincides with the result given by
Case.? The advantage of this derivation of (3.13) is
that principal value and ¢ function are brought in
direct relation to well-established analytical results
rather than postulated.

A function space for which the eigenfunctions
® (u) form a complete basis for arbitrary functions of
4 has been given in Ref. 1. There it is also shown that
the orthogonality relation

1
[ 0000, p d = 11,86 = )

2

[Mv = 220) + ("’7“”)] (3.14)
taken with proper care, can be used to get the expan-
sion coefficients in (3.4). An alternate way to get the
expansion coefficients, presented below, supplies addi-
tional properties of the eigenfunctions ®,. From
(3.3), (3.14), and the normalization {1, ®,(x) du = 1,
it follows that

f_z@v(u)@vr(m du= %+ Mp0 — ). (15

"E. Madelung, Die Mathematischen Hilfsmittel des Physikers
(Springer-Verlag, Berlin, 1953).
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Similarly,

+1 c
f (DV’(Divo dp = 5 * Mvoév',:i:vo (' =, £v),
-1

(3.15b)
where

M,, = - [1 + %lc — DI — D7

<
2
and the normalization

+1
f O, du=1
-1

is valid. Now, given any function y(u) of x4 in the form

W) = 2,0, + a0, + [ 40X,

(3.16)
it follows from the normalizations

fllu’(lu) du=a, + a_ +f_11A(v) dv  (3.17)

and by (3.15a, b), (3.16), and (3.17) that

[ @utirw du =2 [yt de+ Ma,, (3180
1 1

[omvimdn=£ [ v du—Mya, (180
[ 0w du = £ [ v d + M40, G180

Equations (3.18) can serve to determine the expansion
coefficients for a given function y(u).

As an illustration we evaluate 4(») for v = 0. Let
w(p) be a given flux (z, u) at z =0. By (3.12),
(3.13), and (3.14) we obtain for ®y(x) and M, at

v =0

Qo(p) = d(u), M, =1. (3.19)
Inserting these values into (3.18c) yields
1
vO=£ [ pwdu+ 40 (20

But whenever y(z, u) has a continuous derivative at
z = 0 (as is the case when z = 0 is in the interior of a
reactor cell), it follows from (2.1) that

OB f_ () d. (3.21)

The difference between the last two equations gives
A(0) = 0. (3.22)

Thus, in problems of practical nature, the domain of
integration with respect to » in (3.4) can be extended
from S, to [—1, 1], since da(y) = A(»)dv = 0 for
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» = 0. In other words, Riemannian integration,
combined with Cauchy’s principal value, can be
applied instead of Lebesgue integration as was
tacitly implied in (3.4).
4. STATIONARY ISOTROPIC TRANSPORT
IN GENERAL PLANE GEOMETRY

We relax the requirement of cylindrical symmetry
and demonstrate that the generating-function ap-
proach leads to a simple representation of the general
solution. A proof of completeness is also presented.
The stationary isotropic transport equation again has
the form

ﬂaﬁ V’(Z, My ¢) + W(za Mo ?S)
zZ

= ﬁr f_lldu’fﬂdsb'w(z, #,¢). (4.1)

The angular distribution %(z, 4, ¢) will now be
expanded in general spherical harmonics so that

@ n

w(z, 4, $) = 2 2

n=0 m=—n 4

2n 4+ 1(n — m)! Aym
4.2)

where the spherical harmonics® are defined as

Y™, $) = ¢m™PM),

P™(u) being the associated Legendre polynomials
defined in Ref. 6:

PI(u) = (=11 — ) di'—f-,, Pw), m>0,

m
(4.42)
(4.4b)

4.3)

—m, = (— m(n'—m)!
Pr™(p) = (—1) 1 m)!

They satisfy the recurrence relation®
@n + DuPw) = (n ~ m + DP, ()
+ (n + mP(w). (4.5)

Applying the orthogonality relation of the spherical
harmonics,

2r 1
f ¢ f duy™ Y™ =
0 —1

Pr(u).

47 (n 4+ m)!
2n + 1(n — m)!

nn'Ymm’ s

(4.6)
to the expansion (4.2) yields
Fune) = [ " a8 [ durte, . Y20 9, 4720
0 -1

fam(Z) =0 for n < |m|. (4.7b)

If the angular distribution y(z, , $) is restricted to
be real, the expansion (4.2), together with (4.3) and
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(4.4), implies that
m (n - m)' *
n,—m =\—- 1 nm*
I =D (n + m)!f

Thus it is sufficient to solve for f,,, with m > 0, the
remaining expansion coefficients f,,,, being determined
by (4.8).

Substituting the expansion (4.2) into the transport
equation (4.1) and applying (4.5) and (4.6) yield the
recurrence relation

d d
m+1l—m—fram+t@+m—foin
dz dz

(4.8)

+ (2n + l)fnm - Cfnmamoéno = 0. (4'9)
Since the second subscript m of f,,,, is the same for all
terms in (4.9), this set of equations can be solved
separately for each value of m. In particular, for
m =0, (4.9) reduces to (2.5) for the axially symmetric
component of the angular distribution, and has been
solved in the previous sections.
For each m fixed and m > 0 we define a generating
function

In 0 = 3 Uunl@, m>0. (410

Applying (4.7) to (4.10) gives the following transforma-
tion of the angular distribution y(z, u, ¢) to the
generating function y,,(z, {):

2 1 o
1@, D) = [ a9 [ duntz, m pem 3 P2
e,

2"m! 0
1 ~impr1 . ,,2\m/2
XJ du ¥(z, 4, $)e (1 /t%) '
S -2 ™
The condition |{| < 1 is necessary and sufficient for
the convergence of the series®
< npm _g)m(zm)' (1 _ 2)M/2
3 CPrw = iy
n=m 2™m! (1 — 2%u + 5™
Using the same arguments as in Sec. 2, we conclude
that the admissible generating function y,,(z, {) must
be analytic in { for || < 1.

Multiplying (4.9) by {*, summing over n from m to
infinity, and using the definition (4.10) gives

(4.11)

(4.12)

0 O _mo
(4 D5t [(m + 1)L C]az X
+2?,’-a-xm+xm-—-0, m>0. (4.13)

Cl¢

The same equation is obtained by applying the
integral transform in (4.11) to (4.1). The result (4.13)
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is a hyperbolic equation, which can be solved, as was
(2.10) of Sec. 2, by the method of separation of
variables. Let

Xm(Z> §) = Xy (2)G oy (0)- (4.14)
Following the steps in Sec. 2, we get
Xmf(2) =€ (v #0) (4.15)
and
nt-»t+02c
dg
+ {(m + 1) —"z" _ v;Gm =0. (4.16)
Multiplying (4.16) by the integrating factor
(1 — 200 + -t
yields ;
21m+
i([l — 2L+ L] va) =0. (417)
dg &
Hence,
Gnl) = — 5L (418)

[l — 20 + £
The substitution of (4.18) and (4.15) in (4.14) and

expansions in powers of { indeed implies f,,, = 0.

for n < m as required by (4.7b). Furthermore, it can
be shown that a necessary and sufficient condition
for G,,,({) of (4.18) to be continuous and analytic
inside the unit circle [{| < 1 is v € [—1, 1]. Hence
the G,,’s are admissible only for v € [—1, 1]. The
general solution for the generating function y,,(z, {)
of (4.10) is, in analogy with (2.25),

o2, D) = f( L AGaDe o, m >0, (419)

The solution of the transport equation (4.1) corre-
sponding to (4.19) is obtained from (4.2) and (4.10)
by expanding the generating function (4.19). From
(4.14), (4.15), (4.18), and Hobson (Ref. 6, p. 105),
it follows that

va(z’ g) = e_Z/mav(C)
(=2)"m!

= const - L — »B)m/2
2m)! ( )
—z/v Z Pm(,p)cn
If we normalize yx,,, by letting
—2)"m!
const (=2)"m! (1 =)™ =1,
(2m)!

we have simply

Am =€ 2 PR, (4.20)
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Hence, from (4.2) and (4.10) it follows that
2204+ 11— m)!

, = —z/v P™(»)P™ e‘im¢
*va(z :u‘) 4 l=|zm| 47T (l + m)' 14 (’V) i (lu)

— ——z/va(,y - ,u)e"’“”

= e—Z/v(Dm,v(,u, ¢)» (421)

where we define

©p (i, 4) = €™6(v — ), m 0. (421)

Equation (4.21) was derived for m > 0. Using the
relation (4.8) between f,, _, and f,,,, this result can
be shown to hold also for m < 0. For m = 0 the set of
eigenfunctions {®, ,} is identical to that in Sec. 3 and.
consists of @, (x), O_, (), and ®,(u) as given by
(3.6b), (3.7), and (3.13), respectively. The general
solution of the transport equation (4.1) is obtained
by superposition, similar to (3.4), and is

Pz, u, ) = a, D, (w)e ™" + a_O_, (u)e”™
+1
+f A(v)(Dv(y)e_’/ Ydvy

+ 3

m=—o0 J—1
m#0

m(v)<1>m (s B)e" dy.
(4.22a)

As we have shown that A(0) = 0, we shall show at the
end of this section that 4,,(0) = 0, and therefore we
can extend the integration over —1 < » < 1. Evaluat-
ing the integrals in (4.22a) and using (4.21') and
the remark following it, we get the representation

¥z, 1y $) = a, D, (We™™ + a_O_, (u)e*’™
1
+ f AWYD (e dv
-1

—z/p Ry A ime
+ et 3 A (w)em.

m=—a

(4.22b)

Completeness of this representation in the extended
function space can be established as follows. Any
arbitrary function y(u, ¢) which possesses a Fourier-
series expansion in ¢ can be written in the form

v, $) = Jg

m=—a0

()€™

But it has already been established!-? that arbitrary
functions of u such as uy(x) can be expressed in terms
of @,, and ®,; thus
ua) = a,0,(1) + a_0_, () + f AG)D, () dv.
(4.23b)

The representations (4.23) are equivalent to the
general expression (4.22b) with z = 0. Thus any

(4.232)
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function in the space defined in Ref. 1, and with an
extended domain to include dependence on ¢, has a
unique and well-defined ‘“‘initial-value” problem,
whenever the function admits an expansion in a
Fourier series in ¢. Thus, the eigenfunctions @ (u)
as given in Ref. 3 do not represent a complete base for
the solution space in the case of homogeneous iso-
tropic slab geometry in the absence of axial symmetry
of the solutions.

In addition to the relations (3.14), (3.15a), and
(3.15b), the eigenfunctions in (4.22) satisfy the
orthogonality relation

27 1

J; f:bm,v(lua 4’)(1):;',\"(!"5 ¢)[U, d,u d¢'

= 2mvM,, 0y — ¥ )0, . (4.24)
for all », v' € [—1, 1] and all integers m, M,, , = 1 if
m # 0. These orthogonality relations can be employed
to determine the expansion coefficients of the repre-
sentation (4.22) for the solution of the transport
equation (4.1) in general slab geometry. In particular,

we obtain from (4.22b) and (4.24) for fixed z, say
z = 0, and given m for 4,,(u),

.szw(O, p, $)e " dp = 274, (n).  (4.25)

If x = 0 and Oy/0z is continuous (as is the case in the
interior of a reactor cell), we obtain from (4.1)

2 2r
0 +J 9(0,0, $)e™* dgp = “c‘f ¢ - p(0) dg =0,
0 4ar Jo
(4.25)
where

pte) = [ [ g, .

Use of (4.25") in (4.25) yields
A,(0) = 0.

Thus, the domain of integration in (4.22a) can indeed
include » = 0. Q.E.D.

5. GREEN’S FUNCTION AND PLANE SOURCES

As an application of the expansion for general slab
geometry, we derive the Green’s function for a plane
source and proceed to solve the transport equation
for given source distributions. The Green’s function
v, for a plane source at z, satisfies the equation

2 1 s
/"2 Y, + Y, = ij d‘ﬁf duy,(z, 95;20:/"0!950)
0z 47 Jo —1

+ 4%7 5(z — z)(p — p)O($ — $o). (5.1)
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Obviously, the angular distribution is discontinuous
at z,. Integrating Eq. (5.1) from z; — € to z, + €
(e > 0) and taking the limit as € — 0 yields

”L[WQ(ZO +3 M, 9[’; Zg ;an 950) - ‘Pg(zo — U, 96;
Zo» fio» $0)] = ﬁ 81 — p)d(b — do). (52)

If we assume that there are no sources at infinity, the
requirement that the solution , vanishes at |z| — <o,
imposed on the expansion (4.22b), suggests the follow-
ing representation:

Wq(z! lu’ ¢; ZO ’ ;u07 ¢0)
1
= a+(I)v0(‘u)e—(2—Zo)/Vo +f A(v)@v(y)e—(z_“)/" dv
0

+00
+ H(M)e_(z_"”/“ z Am(‘u)eim(cﬁvdto)’ z> 7,
"m0

(5.3a)
(1]
_ —a_(D_vO(,u)e("“”W _‘f A(,),)(I)v(‘u)e—(z—zo)/v dv
-1

40
— H(_‘u)e—(z—zo)/u 2 Am(y)eim(¢_¢°), z < zg,

m#0 (5.3b)
where H is the Heaviside function
1, for u>1
H = b o s
() {0, for u<O. (-4)

Substituting Egs. (5.3a) and (5.3b) into Eq. (5.2) and
simplifying, we get

= O — 0% — 40
i
= 0,0 + 00 + [ AC, ) ds

+o0 X
+ 3 An(em e
Ty

For m 5 0, multiplying Eq. (5.5) by (1/2m)e="™* and
integrating over ¢ yields

(5.5

1
87w
Thus, A,,(x) is independent of m and ¢, . Integrating
(5.5) over ¢ and dividing by 2 yields

3(p — po) = An(p)- (5.6)

1
8mu

8(p — po) = a, D, (1) + a_ D_, (1)

+ f LA dv. (5T)
=Y

The remaining expansion coefficients a,, a_, and
A(¥) can be evaluated directly from (5.7) by using the
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orthogonality relations (3.14). The result is

f pOL, (W01 — po) du
a, =
;i;voM‘,0 87%u

= _1_ (I_)i_vv_(ﬁ"_) (5.8a)

8t v M,
and
L D(uo)
A(y) = — 2=, 5.8b)
) 87 »M, (

Since 4,,(1) of Eq. (5.6) is independent of m, ¢, and
¢4, the summations in (5.3a) and (5.3b) simplify to

O — po) < 3 gm0
877‘u

m=—00

‘5(’; 2"") [2b($ — b ~ 11,

Hence y, can be expressed as

(5.9)

Yol2, s 5 205 o> Bo)
. |:(DVo(.“o)(Dvo(,u)e_(’—zo)/vo
= 87 vOMvo
! {(z—29) /v
+ f D ()P (1)é N
0 WM,

—(2—z0)/pt H(M)é(ll" - t“o)
n

ny (Q2md( — do) — 1}],

z > z4, (5.102)

and

Vo2, :u’ b5 2o, o> Po)
[q)—vo(ﬂo)d)_vn(ﬂ)e(z_z")/"’
T g —voM,,
+ f D (o) ()e” ==
vM,

a2/ H(—)0(p — o)

dy

+ e {276(¢ — bo) — 1}],

z<zy. (5.10b)
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For a plane-source distribution density S(zo, io, $o)
the angular distribution takes the form

"PO(Z’ M ¢)

= 0s Hos> PIV(Zs s b5 2o, o Do) it ddodz .
Jﬂs(z tho > P)¥e(Zs s b5 2o, ¢>)dud(zu)

In particular, for an isotropic plane source S =
a(Z - Z())a

Wis(z’ .u9 95)
27 1
=L f 1’/’;:(2, Bs b3 Zo, Mo s Do) ditg dy

1 (‘u)e_lz_z"l/v" 1(1) (‘u)e—]z——zol/v
= — Yo +f \4
477’: voM 0 vM

] dv, (5.12)

vo v

which is axially symmetric as expected. The corre-
sponding particle density is

puld) = [ [ wutes s &) duag

—lz—20[/vo 1 ,—~[z—2o[/v

e e

= + f dv.
2uoM,, o oM,

(5.13)

These results (5.12) and (5.13) agree with the corre-
sponding angular distribution and particle density
given by Case [Ref. 3, Eqgs. (53) and (54)].
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A construction algorithm is given which allows any partially contracted product of y matrices to be
reduced in one line to a simple canonical form involving only the uncontracted indices,

1. INTRODUCTION

Because both the facilities and techniques for
experimental measurements of electrodynamic effects
are improving, an ever increasing demand for doing
higher-order electrodynamics calculations is being
generated, The procedure of drawing a Feynman
diagram, writing down the corresponding matrix
clement as an integration over the internal momenta,
and converting to an integration over the Feynman
parameters, increases in complexity as the order of
the terms to be calculated increases. The problem of
reducing this procedure has been the subject of much
investigation and has met with considerable success.
Chisholm,' Nakanishi,® and others® have presented
rules that allow one to go directly from the Feynman
diagram to integration over Feynman parameters.
These rules can be understood in terms of a simple
and elegant circuit-theory analogy,* which allows one
immediately to write down the denominator of the
integrand in fully reduced form. However, equivalent
rules for writing the fully reduced form for the numer-
ator of the integrand do not as yet exist. This latter
problem is far more difficult because the complexities
of the y algebra reside in the numerator. The algorithm
presented herein is a start toward the solution of this
problem.

We shall be concerned with arbitrary products of
Dirac matrices y, in which some subsets of the indices
are contracted in pairs. Contracted products of this
kind arise in nearly all relativistic calculations involv-
ing Dirac particles.® The usual technique for reducing
such expressions® is straightforward, namely the
successive application of the identities given by Egs.
(A8) and (A9) of the Appendix. Unfortunately, such
a technique can be quite cumbersome for higher-order
calculations and it produces reduced expressions

* Work performed under the auspices of the U.S. Atomic Energy
Commission.

1J. S. R. Chisholm, Proc. Cambridge Phil. Soc. 48, 2, 300 (1952).

2 N. Nakanishi, Progr. Theoret. Phys. (Kyoto) 17, 401 (1957).

3 See there view article, N. Nakanishi, Suppl. Progr. Theoret.
Pays. (Kyoto) 18, 1 (1961), see. p. 4 for further references.

iJ. D. Bjorken and S. D. Drell, Relarivistic Quantum Fields
{McGraw-Hill Book Company, New York, 1965), Chap. 18.4.

§ R. P. Feynman, Phys. Rev. 76, 769 (1949).

6 E. R. Caianiello and S. Fubini, Nuovo Cimento 9, 1218 (1952).

whose form can, in general, be further simplified.
We shall elaborate on this point later.

In this paper we present a simple construction
algorithm for reducing such contracted products to a
simple canonical form. We define the problem and
notation in Sec. II, the algorithm is presented in
Sec. III, and Sec. IV is devoted to proving the
algorithm.

II. THE PROBLEM

We start by defining the four Dirac y matrices via
their anticommutation relations:

YuVy + Vvyy. = 26;4\:[ (ﬂy V= 1’ 2; 3’ 4)’ (2-1)

where 4, is the Kronecker delta function. Some of the
more relevant results on y matrices have been collected
in an appendix for reference.” Equations (A8)~(A14)
of this appendix are of particular relevance.

We are interested in reducing expressions of the
form®

M(o; Ao, Ay, 4z, -+, Aag)
= z AﬂyalAlyagA2 e A2K~1?’awA2K
X1,a2, ¢ ,A2K
X é%l%zé,aa,“ .. (2.2)

%ok -1%a2K "

Here o is a partition of (1,2, -+, 2K) into disjoint
pairs. That is, (o1, 03, * * * , 05x) is a permutation of
(1,2, -, 2K) satisfying

(j=1v21"':K)’
G=1,2-,K~1),

The A, are products of £.factors of y’s:
AJ‘ = Yuiyug T Yufj (] =0,1,2,--,2K), (24)

with free indices g} . We can, with no loss of generality,
assume that

L>1

Og1 < Oy
Ogi1 < Opppq

(2.3)

(G=12,--+,2K—1), (2.5)

since we can always replace the empty produce, ie.,
A; =1, by A; = y,y, (say). Finally, the summation
indicated in (2.2) ranges from 1 to 4 for all the o, .

7 R. H. Good, Jr., Rev. Mod. Phys. 27, 187 (1955).

8 The factors 4¢ and 4sx are, in fact, superfluous since they never

get permuted in the reduction. Their inclusion, however, adds some
convenience in proving the algorithm, as will be seen.
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(b)
F1G. 1. (a) is the Feynman diagram for the expression

>

gy 0g,0%3,%q

YoayArya,A2ya,Asya,Asya, Asyo AsyasArYa,,

whered, = yulyul; Ay = yul; Ay = pdyul; Ae=yul; As = yiulvus;
Ag = yul; A7 = yulyu;. The degree-two vertices are designated

with an X and we have indicated the parity with a 4 or — sign
below each paired vertex. (b) is the constructed graph g, obtained
from the Feynman diagram in (a). We see that the graph has three
disconnected components. By following the rules of the algorithm, we
can immediately write down

M= +2%ul, uf, p, pipd, 03, ul, D vutyulyut -

To every such expression M, we can uniquely
associate a Feynman-type diagram as follows: Place
2K vertices on a horizontal base line, leaving the ends
free. Connect them in pairs, with arcs drawn above the
base line, in accotdance with the pairings in ¢. The
Jjth vertex represents the factor y, , the jth line segment
represents the factor 4;, and the two free ends
represent the factors 4, and A,z , respectively. Next,
divide the jth line segment into /; subsegments by
placing /; — 1 division points (degree-two vertices)
on it. On the two ends, however, place /; division
points (degree-two vertices), thereby dividing each
into /; subsegments plus a free end. Label these
subsegments serially with the symbols p], u3, - = -, i .
We illustrate an example of this in Fig. 1(a).

As we already indicated, any M can be reduced by
the successive application of either Eq. (A8) or (A9),
whichever is appropriate, to each of the K pairings.
This technique leads, in general, to a result containing
a large number of terms, the form and number of
which depends on the order in which the contractions
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are carried out. One can hope to minimize the number
of terms in the result by choosing an order which
minimizes the use of (A9), but unfortunately no
simple rule is known which gives such an optimal order.
The algorithm to be presented here, on the other hand,
carries out all the contractions simultaneously and in
no way depends on any order. Furthermore, the form
of the results are uniform and appear, in general, to
have a simpler structure then is achievable by the
former technique. We illustrate this by a simple
example. Consider

M =3 Yo VuVarVusVusYaYuVas (2.6)

1,02
In Fig. 2(a) we give the Feynman diagram for M. Here
there are only two pairings and it is immaterial, with
regard to choosing an optimal order, which one is
contracted first. Doing the summation over «, first,
we get [by Eq. (A9)]:

M =23 us¥uYouVua T VusYouVuc¥u)? Vs
2
= 4(yuayll1(yllzyn4 + 7,,4'}"42) - y#zymyﬂsym)' (27)

Further identities are then required to see that this
last expression can be simplified to give

M =4y, Y YuVu,> (2.8)

whereas, according to our algorithm the graph of Fig.
2(b) is directly constructable from that of 2(a), and the
result (2.8). can then be written down immediately
by following the path, from left to right, in Fig. 2(b).
This is clarified in the next section.

HI. THE ALGORITHM

In this section we present a construction algorithm
for the reduction of any M of the form (2.2). We
define the notation [cf. Eq. (A10)]:

{p1, P2>" " " P2n} = YoVos """ Vogn
+ Voo " YosVo, - (31)
Then the form of the reduced expression will be 2¥

+ + -

(a) FiG. 2. (a) is the Feynman dia-
gram for the example of Eq. (2.6).
(b) is the constructed graph for
this expression. The algorithm
gives

M = +4yu,YuyY uV -
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multiplying a product of “braces” times a product of
¥,’S, all with an appropriate sign. The indices as they
appear in the “braces” and in the y,’s are a permuta-
tion of all the free indices in M.

Let M(o; Ay, A1, " - * , A2x) be an expression of the
form (2.2) and let 5, be the Feynman diagram corre-
sponding to M. We construct a new graph G,
obtained from F; as follows:

1. To every paired vertex, v(i) (( = 1,2,---,2K),
in 5, assign the parity

41, if there are an even number of
degree-two vertices preceding v(i),

(3.2)
if there are an odd number of

degree-two vertices preceding v(i).

(i) =
—1,

2. For every paired vertex, v(i); ( = 1,2, -+, 2K)
in %y, place a new vertex w(i) on the horizontal line
very slightly to the right or left of v(7), accordingly as
e(i)is +1 or —1, respectively.

3. Break the connections between v(i) and w(i) and
draw K arcs below the horizontal line pairing all the
w(i) in accordance with o.

We now have a graph S, with only degree-two
vertices and with two free ends. It is well known and
obvious that such a graph, if it has & disconnected
components, consists of k — 1 closed circuits and one
chain beginning and ending on the two free ends.
We illustrate two examples of this construction in
Figs. 1 and 2.

The algorithm for writing down the reduced form
of M is:

(a) Starting at the left free end in §,,, we follow the
chain and write the factor

Vv Yoy s (3.3)

where », is the pth symbol u} (say) encountered in
following the chain.

(b) For each of the k — 1 closed circuits, start with
the left-most subsegment x? of that circuit. Traversing
the circuit to the right or left along the starting
subsegment, according as «(j) is —1 or +1, respec-
tively, where e(j) is the parity of the vertex immediately
to the left of the starting subsegment, we premultiply
the previous factor by®

{prpe: " po ) (3-4)

where p, is the pth symbol u! (say) encountered in
traversing the circuit and p, is of course u]. Note:
Since, by (Al3), any two ‘“braces” commute, the
order in which we write them down is immaterial.

9 That every closed circuit has an even number of y factors is
guaranteed by Corollary 4.1.

JOSEPH KAHANE

(c) Finally, we multiply by

(—E-*HIE, (3.5)

Figure 2 is the example [Eq. (2.6)] of the previous
section and the result (2.8) is now immediate.

IV. THE PROOF

In this section we present a proof for the construc-
tion algorithm. The proof rests on two lemmas.

Lemma 4.1: Let M(o; Ay, Ay, 4,5, -
expression of the form (2.2) for which

(a) all the pairings pair vertices of opposite parity,
and

(b) none of the pairings overlap, i.e., the arcs in the
Feynman diagram for M do not intersect.

Then the contruction algorithm, for this M, gives
the correct result.

-, Asx) be an

Proof: From hypothesis (b) it is clear that M must
be of the form

M= AomlAzfr,mzAzrz T Azr,_lmtAZK Y

wherer, <r,<---<r,=K Herem,(i=1,2,---,
t) consists of p; = r; — r;_1(r, = 0) pairings and is
of the form

m= >

i ... i
yﬂlBl}IﬁzB2 yﬂpins‘yﬂpi
B1.B2, * LBy,

i
X BPH—I

" VpyBipa¥p,, (42)

where B} = Ay, ix-

In Fig. 3 we draw the Feynman diagram for m;
and M.

Consider the innermost pairing (i,i + 1) of m,,
the right-most set of pairings. Since €(i) = —e(i + 1),
there must be an even number of y terms in 4,.
That is,

Ai = yﬂliyﬂzi U ymz“ (43)

with /, even. Using Eq. (A11), we have

Z yaiAi‘ydi+16aiui+1 = 2{1”’[1;" ﬂf’/ug, e 3 /"‘11:‘--—1}' (4'4)
Suppose (i) = +1(—1). Then in F,, there are an
even (odd) number of degree-two vertices to the left
of v(i). This implies that there are an even (odd)
number of y terms to the left of the factor (4.4).
Hence, by making use of (A12-Al4), we get

M =bM, 4.5)

where
2{pi, pi, > M1 "5 pa), fore(i) = +1,

) (4.6)
> :uili}’ fore(i) = ~1,

' 2{/“’;’[[‘;"“
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\l

P

o B2 B O,

% 2t (XY
(c)

t
F1G. 3. We exhibit the general structure of m, as given in (4.2) by
drawing its Feynman diagram in (a). We let the shaded semicircle
represent the Feynman diagram for m,. In (b) we display the
structure of M of Eq. (4.1) in terms of these shaded semicircles. 3¢
is the Feynman diagram for M’ as defined by (4.5). The X represents
the degree-two vertex which replaces the closed circuit of M.

and M’ is exactly of the same form as M but with the
factor (4.4) deleted.

The Feynman diagram &, can be gotten from J,,
by simply shrinking the arc pairing (v(i), v(i + 1))
and the line representing 4, to a single degree-two
vertex. This is illustrated in Fig. 3(c).

Next consider the constructed graphs G, and G,,..
Since €(i) = —e(i + 1), it is clear that in G, there
is a closed loop containing only 4, . Since the vertices
of M’ have the same parity assignment as they did in
M, the constructed graph G, is precisely the graph
.G, with this closed loop missing. It then follows that
the algorithm for M gives exactly the result (4.5) and
(4.6). Hence the lemma will have been proven by
induction on K as soon as the case K = 1 is taken
care of.

For K=1, M’' = 4,4, and it is clear that the
algorithm gives exactly the correct result. Q.E.D.

Let M(o; 4y, 41, A5, "+ +, A3x) be an expression
of the form (2.2) for which at least one of the pairings
(#,)), pair two vertices having the same parity. We
can apply (A8) to reduce out this pairing and get

M= —2M', %)
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where M’ is the “once” reduced expression. M’ is
obtained from M by reversing the order of all the y
factors between y, and y, , removing the factors
Yag> Va;» a0d Oy, , and restricting the summation so
as not to include «; and «;.

Lemma 4.2: The construction algorithm is valid for
M if and only if it is valid for M".

Proof: Let €'(k) be the parity in M’ of the kth
vertex in M and let v’ (k) be the vertex in F,,, which
corresponds to the kth vertex in ;. Then

Se(k), fori<k <j,
ek) = (4.8)

e(k), otherwise.

To see this, first suppose that i < k <j. If e(k) =
e()(—e(i)), then e(k) = e(j)(—e(j)). Hence, in Fp,
there are an even (odd) number of degree-two vertices
between v(k) and v(j). Therefore, in 5, there are an
even (odd) number of degree-two vertices between the -
degree-two vertex, which corresponds in M to v(i),
and v'(k). Therefore the parity of v’(k) changes by a
factor —1 in &, . On the other hand, if k& > j,
we have inserted two new degree-two vertices to the
left on v'(k) in F,;; therefore €'(k) = e(k). Finally,
for k < i it is obvious that €'(k) = (k).

It is now clear, from (4.8), that the constructed
graph G,/ can be obtained from S, by the following
simple topological transformation: Rotate everything
on the base line between the ith and jth vertices 180°
about a vertical axis passing through this base line,
keeping all connections intact. The two arcs pairing
(v(), v(j)) and the displaced vertices (w(i), w(j)) are
thereby reduced to degree-two vertices.

Hence, the connectivity of G,, is preserved in G,
and the lemma is proved as regards (a) and (c) of the
algorithm.

It remains only to show that the “braced” factor
produced by rule (b) for a particular closed circuit in
Gy is equal to the “braced” factor produced by rule
(b) for the corresponding closed circuit in §,,..

A closed circuit can be uniquely characterized by
the finite superscripted sequence

C = (kgﬂl), k(zﬁz), cee k;f")), 4.9

where k, represents the rth 4, encountered in travers-
ing the circuit and the superscript f, designates the
sense in which 4, is traversed. 8, = +1(—1) corre-
sponds to traversing 4, to the right (left). We always
take 4, to be the left-most A in the circuit and 8, =
+1.

Let the expression (4.9) represent the circuit C in
G, under consideration. We can immediately dispose
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of the case when k, < i or k, > j. Here Ay, remains
the left-most 4 for the corresponding circuit in G,
and €'(k;) = e(k,).
We therefore consider i<k, <j. Define the
quantity
E, = i(e(k,) + e(k, + 1)). (4.10)

Clearly E, can only take on the values —1, 0, or 1.
We next observe two interesting properties of E,:

(M
0 <= there are an even number
of y factors in 4, ,
=+ 1 <= there are an odd number of
y factors in 4, .

E, = (4.11)

(ID The circuit or chain containing 4, , in general
follows arcs which can be below or above the base
line.

0 <> the path stays on the same side

of the base line in traversing 4,_,

=+ 1 <= the path crosses the base line in
traversing A, .

E, = (4.12)

The latter can be seen by noting that there are four
kinds of corners that can be formed by the base line
and the pairing arc. They are

N.W. |, SE[T, NE[ , SW.7.

The first two always have a positive parity and the last
two have a negative parity. 4, is formed by placing an
East corner to the left of a West corner. Thus (4.12)
follows. [See Corollary 4.1 for an interesting con-
sequence of these observations.)

Let 4, be the right-most 4, to the left of j in C.
Let C’ be the circuit in §,,. corresponding to C. We
then consider the cases:

Case la. etky) = +1, B, = +1.

If e(k, + 1) = +1(~1), then the path after traversing
Ay, is on the opposite (same) side of the base line as
the path before entering A4, . Hence,

E() = ZE,,

is odd (even). Therefore the number of y factors in
Ay, Ay, is odd (even). That is, in the factor for C,
which, by using (A12), we can write as

(4.13)

(Bs) (Br—1)
kzﬂﬂ , kéﬂa), cee, kr—g'i 1))
k
K P15 S
bC = {#21’ . ’Iulkll’ R
( (
k:-—”’ krirlu), cee khﬁk)
e e P
k
/"'1{” ceey /l;c;,, ............ s [u'll}’ (4'14)

KAHANE

there are an even (odd) number of symbols y in the
partial sequence uf! - - - ufr . Therefore, if e(k, + 1) =
+1, then, by (A12) and (A14),

) (-0 ... bl
kr s kr—fr Vo k2 B2)
-~ ~
— k e % e e e e
bo = {ui,, s Mg’s My o
“) =81 L—Bret) ... p(—By_1)
kl y kh i R kh—gh 1 , , kr+1r 1
—
L R T2 T S S,
‘ul;:l s s ta's i1 }

But this is exactly the factor, according to rule (b),
for C'. On the other hand, if e(k, + 1) = —1, then by
(Al2) and (A14),

k::{r—l)’ e k(z—ﬂz)’
/——/\——\
= {* . 7.
bC - {lu'lkr—l 3 s ,“2', 1“17’ ’
(—) (—B3) 1 (~Bnr-1) (— )
kl ’ kh P > kh—gh 1 s " kr+€r+1
o k
kL., L Y 2 F S
/‘tlkll ’ ’ ,uzl’ /4‘11’ ’ ,ul;}
(4.16)

which is again the correct factor for C'. By a similar
analysis we can render the following cases:

Case 1b. etk = —1, B, = +1,
Case 2a. k) =+1, B, =-1,
Case 2b. etky) = —1, B, = -1,

The details of which we leave to the reader. Q.E.D.

Corollary 4.1: In the constructed graph S,,, for
any expression M of the form (2.2), every closed
circuit contains an even number of y factors.

Proof: This follows directly from the observations
I and II of the proof for Lemma (4.2). We simply note
that, in order to close, the path must end on the same
side of the base line as where it started. Hence
i
E)=3E, (4.17)
n=1

must be even. Here / is the total number of A4’s in the
circuit being considered. Q.E.D.

We are now ready to prove the main theorem:

Theorem: let M(o; Ay, Ay, Ay, -+, Ay) be an
expression of the form (2.2). Then the construction
algorithm is valid for M.

Proof: The method of proof is by induction on K.
For K = 1 the theorem can easily be seen to be true.
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For K > 1 we distinguish two cases:

Case 1. M has at least one pairing which pairs
vertices having the same parity.

Then, by Lemma 4.2, if the construction algorithm is
valid for M’, the once reduced expression, it must be
true for M. The theorem follows.

Case 2. All the K pairings of M pair vertices of
opposite parity.

We then have the two subcases:

(a) None of the pairings overlap.

Then the theorem follows directly from Lemma 4.1.

(b) At least one pair of pairings (i, j;) and (i3, j,)
overlap. That is, i; < iy < ji < j, (say).

Suppose there are an odd number of degree-two
vertices between i; and i,. Then there must be an odd
number of degree-two vertices between j, and j, and
an even number of degree-two vertices between i,
and j,;. Let a be the right-most degree-two vertex
between i; and i,, and let b be the left-most degree-
two vertex between j, and j,. Consider the expression
M which is obtained from M by reversing the order of
all the y factors between a and b, inserting the factors
Y at a, v, at b and 4,,, and summing over a and b.
Since the number of degree-two vertices between y, and
y, in M is even, M is the once-reduced expression
from M. By Lemma 4.2, if the construction algorithm
is true for M, it must be true for M. In M, however,

h <h<ipg<Js

and &(i,) = €(jy); €(i,) = €(J,), where &(i) is the parity
in M of the ith vertex in M. We can now twice reduce
M to M', where M’ has the pairings (i, j;) and (iyj»)
reduced. Applying Lemma 4.2 twice, we get that, if the
construction algorithm is true for M’, it must be true
for M and therefore for M. The theorem follows from
the induction hypothesis by noting that M" has K — 1
pairings.

Finally, suppose there are an even number of
degree-two vertices between i; and i,. Then there
must be an even number of degree-two vertices between
J1 and j, and an odd number between i, and j,. Let a
be the right-most degree-two vertex between i, and j; ,
and let b be the left-most degree-two vertex to the
right of j,. Such a vertex can always be assumed to
exist since we can always replace A,z by Ayxyiys.
Consider the expression M obtained from M as before.
Again the number of degree-two vertices between
o and y, in M is even; so if the construction algorithm
is valid for M, it must be valid for M. In M we have

h <ty <jy<ji
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and
&G, = é(,1‘1); &(iy) = g(Iz)

We can therefore twice reduce M to M’, where we
first contract the inside pairing (i,,j,) and then
(i1, J1), and the theorem follows as before. Q.E.D.
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APPENDIX

In this appendix we shall, for the sake of complete-
ness, review some well-known results?'¢ on ¢ matrices
and give some simple extensions needed for the text.
We are particularly interested in having Eqs. (A8),
(Al1)-(A14).

We start again with the defining relations for the
¥ matrices:

Yu¥v + Vv = 20,1 (Al)
and we form the 16 elements
T = I (identity),
Ffzzv) =04, = %(7;[}’\' - 7\'7’;1):
P((;,i) = F:‘S) — ,yu , (A2)

P 1(44) = 757,; 1
I = Vs = V1Y2VsVa -

We state, without proof, six important and well-
known theorems about the I'{?.

Theorem Al: For i # 1; Tr I''? = 0, where Tr (4)
means the trace of 4.

Theorem A2: (I‘;"’)2 = (—1)*1L.

Theorem A3: The 16 I'” are linearly independent
and complete. They therefore form a basis for the
(Clifford) algebra generated by y,, and any element 4
of the algebra can be expanded as

A= Z A;i)lw;i),
%,a
where

1)+l )
ap =0T i) Tr (F{74).

Theorem A4: The trace of a product of an odd
number of y,’s is zero. That is,

Tr (7«1?’42 e )}a2"+1) =0 (n=0,1,--).
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Theorem A5: In the expansion of

cew _— (€3} al 03]
yaﬂ’az yan - z Aa Fa b
we have

AV = 4® = 4 = 0, for n odd,
and

AP = AW =0, for n even.

Theorem A6: There exists a 4 X 4 nonsingular
matrix B, such that By, B! = »T, where yT is the
transpose of y, and

BF;i)B—l — (_ 1)i+1(11((z1‘))T.

From Theorem A5 we see directly that we can
write

4 Vulyaz . e ya2"+1 = A(3)F(3) + A(4)I‘(4) (A3)
an
VeVe Ve = ADTW 4 4OTE@ 4 4G (Ad)
ay %on ’

where
(D) (67
AT =3 47TY.

a

We then prove the following corollary.

Corollary Al: 1If even and odd products of y’s are
expanded as above, then

Vagnss Vs " " " YogVo, = ADTS — ADT@W  (A5)
and

Ve Y, Ve Ve = AT . 4IT(2) + ABTG)

Ropl Xap_1 Al &y .

(A6)
Proof: From Theorem A6 we see
VeV ' * " VaVar = B V' ' VasVaB
=B (VaVe, " Va)' B,

and the corollary follows from substituting the
appropriate expansions for y, ‘- -y, and applying
Theorem A6 again.

Theorem A7:

4
(3) I €7} pl€1]
zyura Yu= 4 Fa H
u=1
where

a? = (4,0,-2,2, —4). (A7)

This can be seen by inspection,
Corollary A2:

4
Ely“yaxyaz C Vagna Ve = “Wagnir """ YV - (A8)
framd

This follows from direct application of Theorem A7
and Corollary Al.

KAHANE

Corollary A3:

4
uzlnyalnz VeV

= 2(712nyd1 e yagn—l + yazn—l e 7117a2,.)- (Ag)

This follows directly from the commutation relations
(Al) and the preceding corollary. It can be derived as
follows:

4
2 ViVar " VeV
=1

4
=217’u(A(1)Pm + 4@r® +A(5)F(5))'yp

“=
— 4(A‘1’I“1) _ A(s)r\(s)) — 4(A“’I“1’ _ A‘5’I“5’)y2
= 4y, (A(I)I‘(l) +A(5)F(5)W :
= 2a0 VetV " Vagn T Varn """ VasVer)Vasas

from which (A9) follows. The advantage of deriving
it in this way is that it leads immediately to the next
corollary. First define the notation

{0(1 s O%gs * " T az'n} = VYaVay * " " Vagy

t Va, * " VeV, - (AlO)

For n = 1, this notation agrees with the standard
anticommutator braces. Then we rewrite (A9) as

4
zlyuyalyag C T Vag¥u = 2{“2na Ky, Koy " " 7y o(2n—1}-
u:
(Al11)

Also, from the definition (A10) it is obvious that
{“1:052,"',‘12"}:{0‘27;,""“2’“1}- (A12)
Corollary A4:
YuVu, """ Vuk{‘xl’ Uyt "7 s Bgp)
_ {{“2139 A1y Xgy " ° 7y azn—l}yulyuz T Y (fOl‘ odd k)a
{0(1’ Ogy * " "y “2n}yu1yu2 U Ve (fOI' even k)
(A13)

The proof imitates the proof of Corollary A3:

yulyuz e Vu,,{“u Ao, * " °y az'n}
_— 2),”1,}.“2 e yuk(A(l)P(l) + A(s)[‘(s))
= 2(ADTD 4 (= 1ADT)y, 9, -y,

and the corollary follows.

Corollary A5:
(Al14)

{0(1, Ao, * 7 >‘X2n} = {“aa T, gy, %p, Ot2}-

This follows trivially by applying Corollary A4 twice.
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